

MANUAL DEL USUARIO Sistemas UPS Online Modulares Taurus MD AB-TAURMD 30 ~ 300kVA

120/208 VCA Nativo

Contenido

Prefac	Prefacio			
U	Uso de Este Manual			
U	suarios	3		
Ν	lotas	3		
Precau	Precauciones de Seguridad			
D	efinición de los Mensajes de Seguridad	4		
E	tiquetas de Advertencia	4		
Iı	nstrucciones de Seguridad	5		
Т	Traslado e Instalación			
D	epuración y Operación	6		
Ν	Iantenimiento y Reemplazo	6		
S	eguridad de la Batería	8		
E	liminación de Desechos	8		
1 Estr	uctura e Introducción al Sistema UPS Taurus MD 30-300kVA	9		
1	.1 Estructura del Sistema UPS Taurus MD 30-300kVA	9		
	1.1.1 Configuración del Sistema UPS Taurus MD 30-300kVA	9		
	1.1.2 Vistas del Sistema UPS Taurus MD 30-300kVA	10		
	1.1.3 Detalles de las Vistas del Sistema UPS Taurus MD 30-300kVA	. 14		
1	2 Introducción al Producto	16		
	1.2.1 Descripción del Sistema UPS Taurus MD 30-300kVA	16		
	1.2.2 Descripción de los Módulos de Potencia	17		
	1.2.3 Modos de Operación	17		
2 Insta	lación	21		
2	1 Ubicación	. 21		
_	2.1.1 Entorno para la Instalación	21		
	2.1.2 Selección de Sitio	21		
	2.1.3 Tamaño y Peso	22		
2	2 Descarga y Desembaque	23		
-	2 2 1 Traslado y Desempaque del Gabinete	23		
	2 2 2 Desempaque de los Módulos de Potencia	24		
2	3 Colocación	26		
2	2 3 1 Colocación del Gabinete	26		
	2.3.1 Colocación de los Módulos de Potencia	29		
2	4 Baterías	30		
2	5 Entrada de Cableado	30		
2	6 Cables de Potencia	30		
7	2.6.1 Especificaciones	32		
/	2.6.7 Especificaciones de la Terminal de Cableado de Potencia	32		
	2.6.2 Especificaciones de la reminiar de Cabiedad de Fotenera	22		
	2.6.5 Disjuniones	34		
2	7 Cables de Control y Comunicaciones	36		
2	2 7 1 Interfaz de Contacto Seco	30		
	2.7.2 Interfaz de Comunicaciones	Δ3		
3 Pane	2.7.2 internaz de Comunicaciones	ΛΛ		
31 and	1 Panel I CD de los Módulos de Potencia	. 44 ЛЛ		
5	3 1 1 Indicadores I FD	44 ΛΛ		
	3.1.2 Teclas de Control y Operación	 45		
	3 1 3 Pantalla I CD	45 45		
2	 Panel de Operación del Sistema LIPS Taurus MD 30-300kVA 	45 48		
5	3.2 1 Indicadores I FD	<u>40</u> <u>1</u> 8		
	3 2 2 Teclas de Control y Operación	-0 ДQ		
	3 2 3 Pantalla I CD Táctil	50		
		50		

	experts in Pow	ver Con
3.3	Menu Principal	. 51
	3.3.1 Menu del Gabinete	. 51
	3.3.2 Menu de los Modulos de Potencia	54
	3.3.3 Menu de Ajustes	. 58
	3.3.4 Menú del Registro	. 66
	3.3.5 Menú de Operación	. 73
	3.3.6 Menú del Osciloscopio	. 75
4 Operac	iones	. 77
4.1	Arranque del Sistema UPS Taurus MD 30-300kVA	. 77
	4.1.1 Arranque en Modo Normal	. 77
	4.1.2 Arranque en Baterías	. 78
4.2	Apagado del Sistema UPS Taurus MD 30-300kVA	80
4.3	Procedimiento para Cambiar entre Modos de Operación	. 80
	4.3.1 Transferencia de Modo Normal a Modo de Baterías	. 80
	4.3.2 Transferencia de Modo Normal a Modo de Derivación	. 80
	4.3.3 Transferencia de Modo de Derivación a Modo Normal	. 81
	4.3.4 Transferencia de Modo Normal a Modo de Derivación para Mantenimiento	. 81
	4.3.5 Transferencia de Modo de Derivación para Mantenimiento a Modo Normal	. 82
4.4	Mantenimiento de las Baterías	. 83
4.5	EPO (Apagado de Emergencia)	. 84
4.6	Instalación de Sistemas en Operación Paralela	. 84
5 Manter	nimiento	. 85
5.1	Precauciones	. 85
5.2	Instrucciones para Mantenimiento de Módulos de Potencia	. 85
5.3	Instrucciones para Mantenimiento de las Unidades de Monitoreo y Derivación	. 86
	5.3.1 Mantenimiento de la Unidad de Monitoreo y Derivación para AB-TAURMD60K30X y	
	AB-TAURMD120K30X	86
	5.3.2 Mantenimiento de la Unidad de Monitoreo y Derivación para AB-TAURMD180K30X	у
	AB-TAURMD300K30X	. 86
	5.3.3 Mantenimiento de las Baterías	. 87
5.4	Reemplazo del Filtro de Polvo (opcional)	88
6 Especi	ficaciones del Producto	. 89
6.1	Estándares Aplicables	. 89
6.2	Características Ambientales	. 89
6.3	Características Mecánicas	. 89
6.4	Características Eléctricas	. 90
	6.4.1 Características Eléctricas del Rectificador	. 90
	6.4.2 Características Eléctricas del Enlace CC Intermedio	. 90
8	6.4.3 Características Eléctricas del Inversor	. 91
8	6.4.4 Características Eléctricas de la Entrada Principal y Entrada de Derivación	. 91
6.5	Eficiencia	. 91
6.6	Pantalla e Interfaz	. 91
Anexo. A	Instrucciones Para Sistemas UPS Modulares en Paralelo	. 92

Prefacio

Uso de Este Manual

El manual contiene información sobre la instalación, el uso, el funcionamiento y el mantenimiento de los Sistemas UPS Taurus MD 30-300kVA.

Lea atentamente este manual antes de la instalación.

Usuarios

Personal autorizado.

Notas

Ablerex proporciona un amplio rango de soporte técnico y servicios. Nuestros clientes pueden contactar nuestras oficinas locales o centro de atención a clientes para obtener ayuda.

El manual será actualizado regularmente, debido a mejoras al producto, u otras razones.

A menos que se haya acordado de otra forma, el manual debe ser utilizado solamente como una guía para los usuarios, y cualquier información o declaración contenida en este manual no será una garantía expresa o implicada.

Precauciones de Seguridad

Este manual contiene información sobre la instalación y el funcionamiento de los Sistemas UPS Taurus MD 30-300kVA. Lea atentamente este manual antes de la instalación.

El Sistema UPS Taurus MD 30-300kVA no puede ser puesto en operación hasta que sea llevada a cabo la puesta en marcha por ingenieros certificados por el fabricante (o su agente). No hacerlo podría resultar en un riesgo para la seguridad del personal, mal funcionamiento del equipo e invalidación de la garantía.

Definición de los Mensajes de Seguridad

Peligro	Se pueden causar lesiones humanas graves o incluso la muerte,
	si se ignora este requisito.
Advertencia	Se pueden causar lesiones humanas o daños al equipo, si se
	ignora este requisito.
Atención	Se pueden causar daños en el equipo, pérdida de datos o un
	rendimiento deficiente si se ignora este requisito.
Ingeniero de Puesta en Marcha	El ingeniero que instala u opera el equipo debe estar bien
	capacitado en electricidad y seguridad, y estar familiarizado con
	la operación, depuración y mantenimiento del equipo.

Etiquetas de Advertencia

Las etiquetas de advertencia indican la posibilidad de lesiones humanas o daños al equipo, y sugieren los pasos correctos para evitar el peligro. En este manual hay tres tipos de etiquetas de advertencia como se describe abajo.

LIQUEIA	DESCRIPCION		
Danger Se pueden causar lesiones humanas graves o incluso la muerte, si se este requisito.			
Warning	Se pueden causar lesiones humanas o daños al equipo, si se ignora este requisito.		
Artention	Se pueden causar daños en el equipo, pérdida de datos o un rendimiento deficiente si se ignora este requisito.		

Instrucciones de Seguridad

ETIQUETA	DESCRIPCIÓN			
Danger	 Llevadas a cabo solamente por ingenieros de puesta en marcha. Este Sistema UPS Taurus MD 30-300kVA está diseñado para aplicaciones comerciales e industriales solamente, y no es intencionado para uso con dispositivos o sistemas de soporte de vida. 			
Warning	Antes de la operación, lea todas las etiquetas de advertencia cuidadosamente, y siga todas las instrucciones.			
	Cuando el sistema estás operando, no toque las superficies con esta etiqueta para evitar cualquier quemadura.			
1	Componentes sensibles a descargas electrostáticas dentro del Sistema UPS Taurus MD 30-300kVA. Se deberán tomar las medidas anti electrostáticas antes de su manipulación.			

Traslado e Instalación

ETIQUETA	DESCRIPCIÓN
Danger	 Mantenga el equipo alejado de fuentes de calor o salidas de aire. En caso de incendio, solamente use extintores de polvo seco, el uso de extintores líquidos puede resultar en descargas eléctricas.
Warning Warning	 No encienda el sistema si se encuentra cualquier parte dañada o anormal. El entrar en contacto con el UPS con materiales o manos húmedas provocará una descarga eléctrica.
	 Utilice medidas apropiadas para el manejo e instalación del Sistema UPS Taurus MD 30-300kVA. Zapatos aislados, ropa protectora y otras medidas son necesarias para evitar lesiones.
Artention	Durante el traslado, mantenga el Sistema UPS Taurus MD 30-300kVA libre de golpes o vibraciones.
/	Instale el Sistema UPS Taurus MD 30-300kVA en un ambiente adecuado. Vea la Sección 2.3 para más detalles.
/	

đ

Depuración e Instalación

ETIQUETA	DESCRIPCIÓN			
Danger	 Asegúrese que el cable de aterrizaje esté bien conectado antes de conectar los cables de potencia. El cable de tierra y el neutro deben estar en conformidad con las prácticas establecidas en los códigos eléctricos locales y nacionales. Antes de mover o reconectar los cables, asegúrese de cortar todas las fuentes de alimentación eléctrica, y espere por lo menos 10 minutos para descarga interna. Use un multímetro para medir el voltaje en las terminales y asegúrese que el voltaje sea menor a 36V antes de la operación 			
Arrention	 La corriente de fuga de tierra en la carga deberá ser conducida por un Disyuntor de Circuitos de Corriente Residual, o Dispositivo de Corriente Residual. Se deberá llevar a cabo una revisión inicial e inspección cuando el Sistema UPS Taurus MD 30-300kVA haya estado almacenado por un periodo extendido de tiempo. 			

Mantenimiento y Reemplazo

ETIQUETA	DESCRIPCIÓN				
	Todos los procedimientos de mantenimiento y servicio de equipos que involucran acceso interno necesitan herramientas especiales y deben ser llevados a cabo solo por personal capacitado. Los componentes a los que se puede acceder abriendo la cubierta protectora con herramientas no pueden ser manipulados por parte del usuario.				
Danger	 Este Sistema UPS Taurus MD 30-300kVA tiene plena conformidad con el estándar IEC62040-1-1, Requisitos generales y de seguridad para su uso del Sistema UPS Taurus MD 30-300kVA en el área de acceso del operador". Existen voltajes peligrosos dentro del gabinete de baterías, sin embargo, el riesgo de contacto con estos altos voltajes es mínimo para usuarios. Dado que el componente con voltaje peligroso solo se puede tocar abriendo la cubierta protectora con una herramienta, la posibilidad de hacer contacto con dicho componente de alto voltaje es mínima. No existe ningún riesgo para el personal al operar el equipo de manera normal, siguiendo los maredimientes encentrias recomendados en este menuel. 				

Seguridad de la Batería

ETIQUETA	DESCRIPCIÓN				
	Todos los procedimientos de mantenimiento y servicio de la batería que implican acceso interno requieren herramientas o llaves especiales y deben ser realizados únicamente por personal capacitado.				
	Cuando se conectan entre sí, el voltaje en terminal de la batería superará los 400 VCC y es potencialmente letal.				
	Los fabricantes de baterías proporcionan detalles sobre las precauciones necesarias que deben observarse al trabajar en un gran banco de celdas de batería o en sus proximidades. Estas precauciones deben seguirse implícitamente en todo momento. Debe prestarse especial atención a las recomendaciones relativas a las condiciones ambientales locales y al suministro de ropa de protección, primeros auxilios e instalaciones de extinción de incendios.				
	La temperatura ambiente es un factor importante para determinar la capacidad y la vida útil de la batería. La temperatura nominal de funcionamiento de la batería es de 20 °C. Operar por encima de esta temperatura reducirá la vida útil de las baterías. Cambie periódicamente las baterías de acuerdo con los manuales de usuario del fabricante para garantizar el tiempo de respaldo del UPS.				
Warning	 Reemplace las baterías solo con el mismo tipo y número, o puede causar una explosión o un rendimiento deficiente. 				
	Al conectar la batería, siga las precauciones para operación de alto voltaje antes de aceptar y usar la batería, verifique la apariencia de las baterías. Si el embalaje está dañado, o la terminal de la batería está sucia, corroída u oxidada, o la carcasa está rota, deformada o tiene fugas, reemplácela con una nueva, de lo contrario, se puede producir una reducción de la capacidad de la batería, fugas eléctricas o incendios.				
	Antes de utilizar la batería, retire anillos de los dedos, relojes, collares, brazaletes y cualquier otra joya de metal.				
	➢ Use guantes de goma.				
	Se debe usar protección para los ojos para evitar lesiones por arcos eléctricos accidentales.				
	Utilice únicamente herramientas (por ejemplo, llave inglesa) con mangos aislados.				
	Las baterías son muy pesadas. Manipule y levante la batería con el método adecuado para evitar lesiones humanas o daños en la terminal de la batería.				
	No descomponga, modifique ni dañe la batería. De lo contrario, se puede provocar un cortocircuito en la batería, fugas o incluso lesiones humanas.				

Seguridad de la Batería

ETIQUETA	DESCRIPCIÓN				
Warning	 DESCRIPCION La batería contiene ácido sulfúrico. En funcionamiento normal, todo el ácido sulfúrico se conecta a la placa de separación y a la placa de la batería. Sin embargo, cuando la carcasa de la batería está rota, el ácido se escapará de la batería. Por lo tanto, asegúrese de usar un par de gafas protectoras y guantes de goma cuando opere la batería. De lo contrario, puede quedar ciego si el ácido entra en los ojos y su piel puede resultar dañada por el ácido. Al final de la vida útil de la batería, la batería puede tener un cortocircuito interno, drenaje de electrolítico y erosión de las placas positivas / negativas. Si esta condición continúa, es posible que la temperatura de la batería esté fuera de control, se hinche o tenga fugas. Asegúrese de reemplazar la batería antes de que ocurran estos fenómenos. Si una batería tiene fugas de electrolito o está dañada físicamente de alcuna etemperatura de la carcana de la carcana de la control de control de cana de				
	alguna otra manera, debe reemplazarse, almacenarse en un recipiente resistente al ácido sulfúrico y desecharse de acuerdo con las regulaciones locales.				
	inmediatamente con agua.				

Eliminación de Desechos

ETIQUETA	DESCRIPCIÓN
Warning	> Deseche la batería usada de acuerdo con las regulaciones locales.

1 Estructura e Introducción al Sistema UPS Taurus MD 30-300kVA

1.1 Estructura del Sistema UPS Taurus MD 30-300kVA

1.1.1 Configuración del Sistema UPS Taurus MD 30-300kVA

Las configuraciones del Sistema UPS Taurus MD 30-300kVA son proporcionadas en la Tabla 1-1.

Ítem	Componente	Cantidad / Piezas	Notas
	Disyuntor Principal	1.000	Requisito, instalado en fábrica.
	Disyuntor de Derivación Manual	1	Requisito, instalado en fábrica.
AB-TAURMD60K30X	Disyuntor de Derivación de Mantenimiento	1	Requisito, instalado en fábrica.
	Disyuntor de Salida	1	Requisito, instalado en fábrica.
	Unidad de Monitoreo y Derivación	1	Requisito, instalado en fábrica.
	Filtro de Polvo	1	Opcional.
	Módulos de Potencia	1-2	Requisito, instalado en sitio.
	Disyuntor de Derivación Manual	1	Requisito, instalado en fábrica.
AB-TAURMD120K30	Unidad de Monitoreo y Derivación	1	Requisito, instalado en fábrica.
	Filtro de Polvo	1	Opcional
	Módulos de Potencia	1 - 4	Requisito, instalado en sitio.
	Disyuntor de Derivación Manual	1	Requisito, instalado en fábrica.
AB-TAURMD180K302	Unidad de Monitoreo y Derivación	1	Requisito, instalado en fábrica.
	Filtro de Polvo	1	Opcional
	Módulos de Potencia	1 - 6	Requisito, instalado en sitio.
	Disyuntor Principal	1	Requisito, instalado en fábrica.
	Disyuntor de Derivación Manual	1	Requisito, instalado en fábrica.
AB-TAURMD300K302	Disyuntor de Derivación de Mantenimiento	1	Requisito, instalado en fábrica.
	Disyuntor de Salida	1	Requisito, instalado en fábrica.
	Unidad de Derivación	1	Requisito, instalado en fábrica.
	Unidad de Monitoreo	1	Requisito, instalado en fábrica.
	Filtro de Polvo	1	Opcional
	Módulos de Potencia	1 - 10	Requisito, instalado en sitio.

Tabla 1-1: Configuración del Sistema UPS Taurus MD 30-300kVA

1.1.2 Vistas del Sistema UPS Taurus MD 30-300kVA

Las vistas del Sistema UPS Taurus MD 30-300kVA se muestran en la Figura 1-1.

Figura 1-1, Vistas del Sistema UPS Taurus MD 30-300kVA.

(b) Vistas del AB-TAURMD120K30X

(d) Vistas del AB-TAURMD300K30X

1.1.3 Detalles de las Vistas del Sistema UPS Taurus MD 30-300kVA

Los detalles de las vistas del Sistema UPS Taurus MD 30-300kVA se muestran en la Figura 1-2.

Figura 1-2, Detalles de las vistas del Sistema UPS Taurus MD 30-300kVA

Panel de control con pantalla a color;
 Módulos de potencia;
 Unidad de monitoreo y derivación (sin función hot-swap);
 Interruptores de circuito (entrada / entrada de derivación / derivación de mantenimiento / salida);
 Terminal de conexiones;
 SPD (opcional)

(b) Detalles del AB-TAURMD120K30X

① Panel de control con pantalla a color; ② Módulos de potencia; ③ Unidad de monitoreo y derivación (sin función hot-swap); ④ Interruptor de circuito de derivación manual; ⑤ Terminal de conexiones; ⑥ SPD (opcional)

(c) Detalles del AB-TAURMD180K30X

① Panel de control con pantalla a color; ② Módulos de potencia; ③ Unidad de derivación; ④ Interruptor de circuito de derivación manual; ⑤ Terminal de conexiones; ⑥ SPD (opcional); ⑦ Módulo de monitoreo

(d) Detalles del AB-TAURMD300K30X

1.2 Introducción al Producto

1.2.1 Descripción del Sistema UPS Taurus MD 30-300kVA

El Sistema UPS Taurus MD 30-300kVA Modular está conformado por las siguientes partes: módulos de potencia, la unidad de derivación estática centralizada, la unidad de monitoreo y el gabinete con interruptores de circuito. Una o varias cadenas de baterías deberán ser instaladas para proporcionar respaldo de energía al fallar la energía utilitaria. La estructura de los Sistemas UPS se muestra en la Figura 1-3.

Figura 1-3, Diagrama de Bloque del Sistema UPS Taurus MD 30-300kVA

(b) Diagrama de bloque de Sistemas UPS Taurus MD 30-300kVA AB-TAURMD120K30X y AB-TAURMD180K30X.

Módulo de Potencia

Nota: El Sistema UPS Taurus MD 30-300kVA AB-TAURMD120K30X o AB-TAURMD180K30X solo cuenta con un switch de derivación manual, y para el Sistema UPS Taurus MD 30-300kVA AB-TAURMD180K30X, una entrada sencilla es estándar.

1.2.2 Descripción de los Módulos de Potencia

La estructura de los módulos de potencia se muestra en la Figura 1-4. Los módulos de potencia contienen un rectificador, un inversor y un cargador CC.

Figura 1-4, Diagrama de Bloque de los Módulos de Potencia

Los Sistemas UPS Modulares Serie MD son sistemas de doble conversión que permiten su operación en los siguientes modos:

- Modo Normal •
- Modo de Baterías •
- Modo de Derivación •
- Modo de Mantenimiento (Derivación Manual) •
- Modo ECO •
- Modo de Conversión de Frecuencia •

1.2.3.1 Modo Normal

Los inversores de los módulos de potencia proporcionan energía CA a la carga CA crítica. El rectificador deriva energía de la entrada principal CA y proporciona energía CC al inversor; mientras tanto el cargador deriva energía CC del rectificador y recarga las baterías.

1.2.3.2 Modo de Baterías

Al presentarse una falla del suministro de energía en la entrada principal, los inversores de los módulos de potencia obtendrán energía de las baterías, y proporcionarán energía CA a la carga CA crítica. No se presenta interrupción a la carga crítica. Una vez restaurado el suministro CA a la entrada principal, el Sistema UPS Taurus MD 30-300kVA automáticamente cambiará a modo normal sin intervención del usuario.

Figura 1-6, Diagrama de Operación en Modo de Baterías.

Nota: Con la función de "Arranque en Frío", el Sistema UPS Taurus MD 30-300kVA puede arrancar sin energía en la entrada principal. Para los Sistemas UPS de dos y cuatro ranuras, la función de "Arranque en Frío" es opcional; para los Sistemas UPS de seis y diez ranuras, la función es estándar.

1.2.3.3 Modo de Derivación

Si la capacidad de sobrecarga del inversor es excedida en operación de modo normal, o si el inversor no está disponible por alguna razón, el switch estático llevará a cabo una transferencia de la carga del inversor a la fuente de derivación, sin interrupción alguna a las cargas críticas. Si el inversor está fuera de sincronía con la fuente de derivación, se presentaría una interrupción durante la transferencia del inversor a la fuente de derivación. Esto sucede para evitar corrientes cruzadas derivadas de poner en paralelo fuentes CA fuera de sincronía. Ésta interrupción es programable, pero el ajuste típico es menor a tres cuartos de un ciclo eléctrico, es decir, menos de 12.5ms (60Hz), o menor a 15ms (50Hz). La acción de transferencia desde o hacia el inversor puede ser llevada a cabo por comando desde la pantalla de monitoreo.

1.2.3.4 Modo de Mantenimiento (Derivación Manual)

Los Sistemas UPS cuentan con un switch de derivación manual para asegurar la continuidad en el abasto de energía a las cargas críticas cuando el sistema no está disponible, por ejemplo, durante un procedimiento de mantenimiento.

Figura 1-8, Diagrama de Operación en Modo de Mantenimiento.

En modo de mantenimiento existen voltajes peligrosos en las terminales de entrada, salida y neutro, aún cuando todos los módulos de potencia y la pantalla están apagados.

1.2.3.5 Modo ECO

Para mejorar la eficiencia del sistema, el Sistema UPS Taurus MD 30-300kVA funciona en modo de derivación y el inversor está en espera. Cuando la energía en la entrada de derivación falla, el Sistema UPS Taurus MD 30-300kVA cambiará a modo de baterías y el inversor alimentará la carga.

Nota: Existe un corto periodo de interrupción (menor a 10ms) al trasferir de Modo ECO a Modo de Baterías. Se deberá asegurar que dicha interrupción no tenga efectos adversos en las cargas.

1.2.3.6 Modo de Conversión de Frecuencia

Al configurar el Sistema UPS Taurus MD 30-300kVA en "Modo de Conversión de Frecuencia", el Sistema UPS Taurus MD 30-300kVA proporcionará una salida estable con frecuencia fija, independientemente de la frecuencia a la entrada (50 o 60Hz). Cuando el Sistema UPS Taurus MD 30-300kVA está configurado en este modo, el switch estático de derivación es deshabilitado.

2 Instalación

2.1 Ubicación

Mientras que cada sitio tiene sus propios requerimientos, las instrucciones de instalación en esta sección son una guía de los procedimientos y practicas generales que deben ser observadas por el ingeniero de puesta en marcha.

2.1.1 Entorno para la Instalación

Los Sistemas UPS Serie MD están diseñados para ser instalados en interiores y utilizan enfriamiento por convección forzada mediante ventiladores internos. Asegúrese de que haya suficiente espacio para ventilación y refrigeración del Sistema UPS Taurus MD 30-300kVA.

Mantenga el Sistema UPS Taurus MD 30-300kVA alejado de agua, calor y materiales corrosivos inflamables y explosivos. Evite instalar el Sistema UPS Taurus MD 30-300kVA en un entorno con luz solar directa, polvo, gases volátiles, material corrosivo y alta salinidad.

Evite instalar el Sistema UPS Taurus MD 30-300kVA en un entorno con contaminantes conductivos.

La temperatura ambiente de funcionamiento de las baterías es entre 20 °C a 25 °C. La operación en entornos por encima de 25 °C reducirá la vida útil de las baterías, y la operación en entornos por debajo de 20 °C reducirá la capacidad de las baterías.

Las baterías generarán una pequeña cantidad de hidrógeno y oxígeno al final de la carga; asegúrese que el volumen de aire fresco del entorno de instalación de las baterías cumpla con los requisitos de la EN50272-2001. Cuando se utilizan baterías externas, los disyuntores (o fusibles) del banco de baterías debe montarse lo más cerca posible de las baterías, y los cables de conexión deben ser lo más cortos posible.

2.1.2 Selección del Sitio

Asegúrese que el suelo o la plataforma de instalación puedan soportar el peso del gabinete del UPS, las baterías y los gabinetes de baterías, que no presenten vibraciones y que tengan una inclinación horizontal de menos de 5 grados.

El equipo debe almacenarse en una habitación para protegerlo contra la humedad excesiva y las fuentes de calor.

La batería debe almacenarse en un lugar seco y fresco con buena ventilación. La temperatura de almacenamiento más adecuada es de 20 °C a 25 °C.

2.1.3 Tamaño y Peso

Asegúrese de que haya suficiente espacio para la colocación del Sistema UPS Taurus MD 30-300kVA. El espacio reservado para el gabinete del Sistema UPS Taurus MD 30-300kVA se muestra en la Figura 2-1.

Atención

Asegure el siguiente margen de espacio: al menos 0,8m antes a la puerta principal del gabinete, para poder llevar a cabo mantenimiento fácilmente al (los) módulo(s) de potencia con la puerta frontal completamente abierta; al menos 0,5 m detrás del gabinete para ventilación y refrigeración; al menos 0,5 m de distancia de la parte superior del gabinete. El espacio reservado para el gabinete se muestra en la Figura 2-1.

Las dimensiones y peso del gabinete UPS se muestran en la tabla 2-1

Tabla 2-1, Dimension	nes y Peso	de Gabinetes
----------------------	------------	--------------

Configuración	Dimensiones (Ancho x Profundo x Alto, mm)	Peso (Kg)
AB-TAURMD60K30X (con unidad de derivación)	600 x 980 x 1150	120
AB-TAURMD120K30X (con unidad de derivación)	650 x 960 x 1600	170
AB-TAURMD180K30X (con unidad de derivación)	650 x 1095 x 2000	220
AB-TAURMD300K30X (con unidad de derivación)	1300 x 1100 x 2000	450
Módulo de Potencia	510 x 700 x 178	45

2.2 Descarga y Desempaque

2.2.1 Traslado y Desempaque del Gabinete

Los pasos para mover y desempacar el gabinete son los siguientes:

- 1) Compruebe si hay daños en el embalaje. (Si lo hay, comuníquese con el transportista)
- 2) Transporte el equipo al sitio designado en montacargas, como en la Figura 2-2.

Figura 2-2, Traslade el Gabinete al Sitio Designado.

3) Abra la placa superior del caja de madera con bordes de acero con un punzón y martillo, seguida de los paneles laterales (vea Figura 2-3).

4) Retire la espuma protectora alrededor del gabinete.

- 5) Revise el Sistema UPS Taurus MD 30-300kVA, examine visualmente si se produjo algún daño al sistema durante el traslado. De existir cualquier daño, comuníquese con el transportista. Revise los artículos recibidos contra la lista de empaque. Si hay algún artículo que no esté incluido en la lista, por favor contáctenos.
- 6) Desmonte los pernos que conectan el gabinete con la tarima de madera después del desmontaje.
- 7) Mueva el gabinete al sitio de instalación.

Atención Tenga cuidado al retirar el gabinete para evitar ralladuras en el equipo.

2.2.2 Desempaque de los Módulos de Potencia

Los pasos para mover y desempacar los módulos de potencia son los siguientes:

1) La caja debe colocarse en la plataforma suavemente, como se muestra en la figura 2-5.

Figura 2-5, Coloque Suavemente la Caja en la Plataforma.

Figura 2-6, Abra la Caja.

Cubierta de Espuma

3) Retire la cubierta de espuma, como se muestra en la figura 2-7.

Figura 2-7, Retire la cubierta de espuma.

4) Retire el módulo de potencia cubierto con plástico y retire los materiales de empaque.

2.3 Colocación

2.3.1 Colocación del Gabinete

El gabinete del Sistema UPS Taurus MD 30-300kVA tiene dos formas de soporte: una es apoyarse temporalmente con las cuatro ruedas en la parte inferior, lo que hace conveniente ajustar la posición del gabinete; la otra es mediante pernos de anclaje para sostener el gabinete de forma permanente después de ajustar la su posición. La estructura de apoyo se muestra en la figura 2-8.

Figura 2-8, Estructura de Soporte (Vista por abajo).

(b) AB-TAURMD120K30X (Vista por abajo, unides: mm)

1 Perno de anclaje ajustable; 2 Herrajes de esquina en forma de L; 3 Ruedas de soporte

Los pasos para colocar el gabinete son los siguientes:

- 1) Asegúrese de que la estructura de soporte esté en buenas condiciones y que el piso de montaje sea liso y fuerte.
- 2) Retraiga los pernos de anclaje girándolos en sentido contrario a las agujas del reloj con la llave, haciendo que el gabinete se soporte en sus cuatro ruedas.
- 3) Ajuste el gabinete a la posición correcta.
- 4) Baje los pernos de anclaje girándolos en sentido de las manecillas del reloj usando una llave hasta que el gabinete esté soportado por los cuatro pernos de anclaje.
- 5) Asegúrese que los cuatro pernos de anclaje queden a la misma altura y que el gabinete quede fijo e inmovible.

Atención

Se requiere de equipo auxiliar cuando la superficie de montaje no es lo suficientemente sólida para soportar el gabinete, el cual ayudará a distribuir el peso sobre un área grande. Por ejemplo, cubra el piso con una placa metálica, o aumente el área de soporte de los pernos de anclaje.

2.3.2 Instalación de los Módulos de Potencia

La posición de instalación de los módulos de potencia se muestra en la figura 2-9. Favor de instalar los módulos de potencia de abajo hacia arriba para evitar la inclinación del gabinete debido a un centro de gravedad alto. Los pasos para instalar los módulos de potencia son los siguientes (se muestra el AB-TAURMD180K30X como ejemplo):

- 1) Asegúrese que el gabinete esté fijo y que no existan daños en el cuerpo y puertos de inserción de los módulos de potencia.
- 2) Sujete el módulo de potencia de las manijas y el cuerpo usando dos personas, una de cada lado.
- 3) Inserte el módulo de potencia en la posición de instalación, y empújelo suavemente.
- 4) Fije el módulo de potencia al gabinete mediante los orificios de montaje en los dos extremos de la placa frontal del módulo de potencia, como se muestra en la figura 2-9.

Figura 2-9, Instalación de los Módulos de Potencia.

- No coloque el módulo de potencia boca abajo en el suelo, y no permita que los conectores hagan contacto con él.
- Cualquier trabajo de instalación de módulos de potencia debe ser llevado a cabo por dos personas, pues los módulos son pesados.

2.4 Baterías

Existen tres terminales (positivo, neutro, negativo) que salen del grupo de baterías y se conectan al Sistema UPS Taurus MD 30-300kVA. La línea del neutro se dibuja desde el centro de las baterías en serie (Vea la Figura 2-10).

Figuras 2-10, Diagrama de Cableado de Cadenas de Baterías.

El voltaje en la terminal de las baterías es de más de 400VCC, favor de seguir las instrucciones de seguridad para evitar riesgos de choque eléctrico.

Asegúrese que los electrodos positivo, negativo y neutro se encuentren correctamente conectados de las terminales del banco de baterías al disyuntor, y del disyuntor al Sistema UPS Taurus MD 30-300kVA.

2.4 Entrada de Cableado

Para los AB-TAURMD60K30X y AB-TAURMD120K30X, la entrada de cables se encuentra en la parte inferior del gabinete.

Para el AB-TAURMD180K30X, la entrada de cables se encuentra en la parte superior del gabinete.

Para el AB-TAURMD300K30X, existen entradas de cables en ambas la parte superior e inferior del gabinete.

La entrada de cableado se muestra en la Figura 2-11, Figura 2-12, Figura 2-13 y Figura 2-14.

Figura 2-11, Entrada de Cables para AB-TAURMD60K30X y AB-TAURMD120K30X.

Figura 2-12, Entrada de Cables para AB-TAURMD120K30X.

Figura 2-13, Entrada de Cables para AB-TAURMD300K30X (Entrada superior).

Figura 2-14, Entrada de Cable para AB-TAURMD300K30X (Entrada inferior)

2.6 Cables de Potencia

2.6.1 Especificaciones

Los calibres para cables de potencia recomendados se encuentran en la Tabla 2-2.

	Contenidos		60/30	120/30	180/30	300/30
	Entrada Principa	al	194A	387A	581A	968A
Entrodo		Α	50	150	240	2 x 240
Entrada Deingingl	Sección de Cable	В	50	150	240	2 x 240
r rincipai	(mm ²)	С	50	150	240	2 x 240
		Ν	50	150	240	2 x 240
	Salida		167A	333A	500A	833A
		Α	50	150	240	2 x 185
Salida	Sección de Cable	В	50	150	240	2 x 185
	(mm ²)	С	50	150	240	2 x 185
	A 17 19	Ν	50	150	240	2 x 185
	Entrada de Derivad	ción	167A	333A	500A	833A
Entrada	1 4 S 1 1	Α	50	150	500	833
de	Sección de Cable	В	50	150	500	833
Derivación	(mm ²)	C	50	150	500	833
		Ν	50	150	500	833
Estave de	Entrada de Baterí		245A	489A	734A	1,223A
Entrada	a :/ 1 a 11 ⁺		70	240	300	2 x 300
ue Potoríos	(mm ²)	-	70	240	300	2 x 300
Daterias	(mm²)	Ν	70	240	300	2 x 300
Tierra Física	Sección de Cable (mm ²)	TF	50	150	240	2 x 185

Tahla 2-	2 Calibres	recomendados	nara cahles d	le notencia
Tabla 2	z, Canores	recomendados	para cables o	le potencia.

NOTA:

La sección de cable recomendada para conductores de potencia es solamente para las situaciones descritas abajo:

- Temperatura Ambiental: +30°C
- Pérdida de CA menor a 3%; pérdida de CC menor a 1%. La longitud de los cables de potencia CA debe ser menor a 50 metros, y la longitud de cables de potencia CC debe ser no más de 30 metros.

• Las corrientes descritas en la Tabla 2-2 están basadas en el sistema 208V (voltaje línea-línea).

El tamaño de las líneas de neutro debe ser entre 1.5 y 1.7 veces el valor listado en la Tabla 2-2 cuando las cargas predominantes son no-lineales.

2.6.2 Especificaciones para las Terminales de los Cables de Potencia

Las especificaciones para los conectores de los cables de potencia se describen en la Tabla 2-3.

Tipo	Puerto	Conexión	Tornillo	Torque
	Entrada Principal	Cables prensados, terminal OT	M6	4.9Nm
A D	Entrada Derivación	Cables prensados, terminal OT	M6	4.9Nm
AB- TAUDMD60V20V	Entrada Baterías	Cables prensados, terminal OT	M8	13Nm
TAURMIDOOKJOA	Salida	Cables prensados, terminal OT	M6	4.9Nm
	Tierra	Cables prensados, terminal OT	M6	4.9Nm
	Entrada Principal	Cables prensados, terminal OT	M10	15Nm
AD	Entrada Derivación	Cables prensados, terminal OT	M10	15Nm
AB- TAUDMD120K20V	Entrada Baterías	Cables prensados, terminal OT	M10	15Nm
TAURMDIZURSUA	Salida	Cables prensados, terminal OT	M10	15Nm
	Tierra	Cables prensados, terminal OT	M10	15Nm
	Entrada Principal	Cables prensados, terminal OT	M12	28Nm
AD	Entrada Derivación	Cables prensados, terminal OT	M12	28Nm
AB- TAUDMD180K20V	Entrada Baterías	Cables prensados, terminal OT	M12	28Nm
TAUKIVID100K30A	Salida	Cables prensados, terminal OT	M12	28Nm
	Tierra	Cables prensados, terminal OT	M12	28Nm
	Entrada Principal	Cables prensados, terminal OT	M16	96Mn
AD	Entrada Derivación	Cables prensados, terminal OT	M16	96Mn
AD- TAURMD300K30Y	Entrada Baterías	Cables prensados, terminal OT	M16	96Mn
TAURINDSUUKSUA	Salida	Cables prensados, terminal OT	M16	96Mn
	Tierra	Cables prensados, terminal OT	M16	96Mn

- Tabla 2). Requerimentos bara las terminares de botencia.
--

2.6.3 Disyuntores

Los disyuntores externos para el sistema son recomendados en la Tabla 2-4.

			100 C	
Posición Instalada	60/30	120/30	180/30	300/30
Disyuntor de Entrada Principal	250A/3P	400A/3P	630A/3P	1,000A/3P
Disyuntor de Entrada de Derivación	225A/3P	400A/3P	630A/3P	1,000A/3P
Disyuntor de Salida	225A/3P	400A/3P	630A/3P	1,000A/3P
Disyuntor de Derivación Manual	225A/3P	400A/3P	630A/3P	1,000A/3P
Disyuntor de Baterías	225A, 250VCC	630A, 250VCC	800A, 250VCC	1,250A, 250VCC
				The P

Tabla 2-4, Disyuntores recomendados.

Atención

El disyuntor con RCD (Dispositivo de Corriente Residual) no está sugerido para el sistema.

2.6.4 Conexión de los Cables de Potencia

Los pasos para la conexión de los cables de potencia son los siguientes:

- Verifique que todos los interruptores externos de distribución del Sistema UPS Taurus MD 30-300kVA estén completamente abiertos que el disyuntor interno de derivación de mantenimiento en el Sistema UPS Taurus MD 30-300kVA esté abierto. Coloque los letreros de advertencia necesarios en estos disyuntores para prevenir su operación sin autorización.
- 2) Abra la puerta del gabinete (la puerta frontal para AB-TAURMD60K30X y AB-TAURMD120K30X, y la puerta trasera para gabinetes de seis y diez ranuras) y retire la cubierta plástica o metálica. Las terminales de entrada y salida, de la batería y de tierra se muestran en la Figura 2-15, Figura 2-16, Figura 2-17 y Figura 2-18.

Figura 2-15, Terminales de Conexión para AB-TAURMD60K30X.

Figura 2-18, Terminales de conexión para AB-TAURMD300K30X.

-	OUT	PUT		BYP	ASS IN	IPUT	8	ATTER	Y	MA	IN INP	υT	INPUT
A	В	С	N	A	B	С	+	N	-	A	B	С	N
E		0		-									• •
~													
0	00	00	0	00	0		0	00	0	0	00	00	000
							8.8		00				0
34	3	3	3	2	30	38	2	5	80	38	S	3	40 0
		، ،									۲		
0	0	0	0	0	0	0	0	0	0	0	0	0	
-									1 1				

- 3) Conecte el cable de tierra a la terminal de tierra (PE).
- 4) Conecte los cables CA de alimentación a la terminal de entrada principal y los cables CA de salida a la terminal de salida.
- 5) Conecte los cables de la batería a la terminal de baterías.
- 6) Verifique que todas las conexiones se hayan hecho correctamente e instale nuevamente todas las cubiertas protectoras.

Atención

Las operaciones descritas en esta sección deben ser llevadas a cabo por electricistas autorizados o personal técnico calificado. De tener cualquier dificultad, favor de contactar a la fábrica u oficina local.

Advertencia

- Apriete las terminales de conexión con el suficiente torque (vea la Tabla 2-3), y asegúrese que la rotación de fases sea correcta.
- Antes de la conexión, asegúrese que los disyuntores de entrada y la fuente de alimentación estén apagados. Agregue etiquetas de advertencia para evitar la operación por personal no calificado.
- Los cables de neutro y tierra deben ser conectados en conformidad con los códigos eléctricos nacionales y locales.

2.7 Cables de Control y Comunicaciones

El panel frontal del módulo de derivación proporciona interfaces de contacto seco (J2-J11) y comunicaciones (RS232, RS485, SNMP, interfaz para tarjeta inteligente y puerto USB), como se muestra en la Figura 2-19.

a) Interfaz de contacto seco y comunicaciones para AB-TAURMD60K30X y AB-TAURMD120K30X.

b) Interfaz de contacto seco y comunicaciones para AB-TAURMD120K30X.

c) Interfaz de contacto seco y comunicaciones para AB-TAURMD300K30X.

El Sistema UPS Taurus MD 30-300kVA puede aceptar señales externas de contacto seco y enviar señales de contacto seco a través de los puertos de terminales Phoenix. Los cables conectados a las terminales de contacto seco deben ser separados de los cables de potencia. Además, estos cables deben ser de doblemente aislados con un área de sección transversal entre 0.5 y 1.5mm² para una conexión de una longitud máxima de entre 25 y 50 metros.

2.7.1 Interfaz de Contacto Seco

El Sistema UPS Taurus MD 30-300kVA proporciona los puertos de contacto seco de J2 a J10, y los puertos J5, J6-2 y J7 pueden ser programados como puertos de entrada; el Sistema UPS Taurus MD 30-300kVA puede aceptar la señal de contacto seco de estos puertos para llevar a cabo ciertas operaciones. Los puertos J6-1, J8, J9 y J10 pueden ser programados como puertos de salida, cuando el Sistema UPS Taurus MD 30-300kVA se encuentra bajo ciertas condiciones, puede enviar señales de contacto seco a dispositivos externos para indicar el estado del Sistema, o llevar a cabo ciertas acciones. Las definiciones predeterminadas de estos puertos se muestran en la Tabla 2-5.

	PUERTO	NOMBRE	FUNCIÓN
	J2-1	TEMP_BAT	Detección de la temperatura de la batería
ſ	J2-2	TEMP_COM	Terminal común para detección de temperatura
ſ	J3-1	ENV TEMP	Detección de temperatura ambiental
	J3-2	TEMP COM	Terminal común para detección de temperatura
	J4-1	REMOTE EPO NC	Dispara el EPO cuando se desconecta de J4-2
1	J4-2	+24V_DRY	+24V
	J4-3	+24V_DRY	+24V
ſ	J4-4	REMOTE EPO NO	Dispara el EPO cuando hace corto con J4-3
	J5-1	+24V_DRY	+24V
	J5-2	GEN CONNECTED	Contacto seco de entrada, la función es programable
	J5-3	GND_DRY	Tierra para +24V
	J6-1	BCB Drive	Contacto seco de salida, la función es programable
	J6-2	BCB STATUS	Contacto seco de entrada, la función es programable
	J7-1	GND DRY	Tierra para +24V
	J7-2	Disyuntor de Baterías En Línea	Contacto seco de entrada, la función es programable. Predeterminado: Disyuntor de baterías en línea (cuando en corto con J7-1, indica que el disyuntor de baterías está en línea, y el estado del disyuntor es disponible).
	J8-1	BAT_LOW_ALARM_NC	Contacto seco de salida (normalmente cerrado), la función es programable. Predeterminado: Alarma de batería baja.
	J8-2	BAT_LOW_ALARM_NO	Contacto seco de salida (normalmente abierto), la función es programable.
	J8-3	BAT LOW ALARM GND	Terminal común para J8-1 v J8-2.

Tabla 2-5, Funciones predeterminadas de los puertos de contacto seco.

PUERTO	NOMBRE	FUNCIÓN
J9-1	GENERAL_ALARM_NC	Contacto seco de salida, (normalmente cerrado), la función es programable.
J9-2	GENERAL_ALARM_NO	Contacto seco de salida, (normalmente abierto), la función es programable.
J9-3	GENERAL_ALAMR_GND	Terminal común para J9-1 y J9-2.
J10-1	UTILITY_FAIL_NC	Contacto seco de salida, (normalmente cerrado), la función es programable.
J10-2	UTILITY_FAIL_NO	Contacto seco de salida, (normalmente abierto), la función es programable.
J10-3	UTILITY FAIL GND	Terminal común para J10-1 y J10-2.

Tabla 2-5, Funciones estándar de los puertos de contacto seco.

NOTA

Los puertos de contacto seco de entrada J5-2, J6-2 y J7 pueden ser programados a través de nuestro software MTR, los eventos programables se muestran en la Tabla 2-6.

NO.	EVENTO	DESCRIPCIÓN
1	Entrada de Generador	La energía de entrada es suministrada por el generador.
2	Cierre de Disyuntor Principal	El disyuntor principal de entrada ha sido cerrado.
3	Silenciar	Silenciar
4	Estado del Disyuntor de Baterías	Estado del disyuntor de baterías, abierto o cerrado.
5	Transferencia a Inversor	El Sistema UPS Taurus MD 30-300kVA transferiría a modo de inversor.
6	Disyuntor de Baterías en Línea	Habilitar la revisión del estado del disyuntor de baterías.
7	Transferencia a Derivación	El Sistema UPS Taurus MD 30-300kVA transferiría a modo de derivación.
8	Borrar Fallas	Revisa nuevamente la información de falla o alarma.
9	Sobre carga de Baterías	Las baterías están siendo recargadas excesivamente.
10	Descarga Excesiva de Baterías	Las baterías están siendo descargadas excesivamente.
11	Detener carga de Impulso	Detiene la carga de impulso.

Tabla 2-6, Eventos de entrada programables.

Nota: Los puertos de contacto seco de salida J6-1, J8, J9 y J10 pueden ser programados a través de nuestro software MTR, los eventos programables se muestran en la Tabla 2-7.

Tabla 2-7	, Eventos	programables	de salida.
-----------	-----------	--------------	------------

1	NO	EVENTO	DESCRIPCIÓN	
	N U .	EVENIO	DESCRIPCION	
	1	Disparo del Disyuntor de	Cuando se dispara el disyuntor de baterías.	
	1	Baterías		
		Disparo del Disyuntor de		
	2	Derivación de	Cuando se dispara el disyunior de derivación de	
		Retroalimentación	retroalimentación.	
	3	Sobrecarga	Cuando existe una sobrecarga en la salida del Sistema.	
	4	Alarma General	Cuando se disparan alarmas generales.	
	~	Pérdida de Potencia a la		
	2	Salida Cuando no existe voltaje a la salida de	Cuando no existe voltaje a la salida del sistema.	
	6	Modo de Batería	Cuando el sistema está funcionando en modo de baterías.	
	Cuando hay un		Cuando hay una interrupción de energía a la entrada del	
	7 Falla de Alimentación sistema.	sistema.		
	8	Modo de Inversor	Cuando el sistema está operando en modo de inversor	
	0		Cualido el sistema esta operalido en modo de mversor.	
	9	Carga de Baterías	Cuando las baterías están siendo recargadas.	

NO.	EVENTO	DESCRIPCIÓN
10	Modo Normal	Cuando el sistema está funcionando en modo normal.
11	Voltaje Bajo en Baterías	Cuando el voltaje de las baterías es bajo.
12	En Derivación	Cuando el sistema está funcionando en modo de derivación.
13	Descarga de Baterías	Cuando las baterías están siendo descargadas.
14 Rectificador Listo	Cuando el rectificador está arrancando.	
15	Carga de Impulso	Cuando se aplica carga de impulso a las baterías.

Tabla 2-7, Eventos programables de salida.

Interfaz de la Batería y Detección de la Temperatura Ambiental

Los contactos secos de entrada J2 y J3 pueden detectar la temperatura de las baterías y el medio ambiente respectivamente, y pueden ser utilizados para monitoreo ambiental y carga de baterías por compensación de temperatura. El diagrama de la interfaz para J2 y J3 se muestra en la figura 2-20, la descripción de la interfaz se muestra en la Tabla 2-8.

Tabla 2-8, Descripción de J2 y J3.

PUERTO	NOMBRE	FUNCIÓN
J2-1	TEMP_BAT	Detección de temperatura de las baterías.
J2-2	TEMP_COM	Terminal común.
J3-1	ENV_TEMP	Detección de temperatura ambiental.
J3-2	TEMP_COM	Terminal común.
27		

NOTA

Se requiere un sensor de temperatura específico opcional para la detección de temperatura. Favor de confirmar con su representante de ventas o el fabricante antes de ordenarlo.

Puerto de Entrada de EPO Remoto

J4 es el puerto de entrada para EPO remoto. Requiere la conexión de NC (J4-1) y +24V (J4-2) y desconectar NO (J4-4) y +24V (J4-3) durante el funcionamiento normal. El EPO se activa al desconectar NC (J4-1) y +24V (J4-2), o al conectar NO (J4-4) y +24V (J4-3). El diagrama de puertos se muestra en la Figura 2-21 y la descripción del puerto se muestra en la Tabla 2-9.

Figura 2-21, Diagrama del puerto de entrada para EPO Remoto.

Tabla 2-9, Desripción del puerto de entrada para EPO Remoto.

PUERTO	NOMBRE	FUNCIÓN
J4-1	REMOTE_EPO_NC	Dispara el EPO al desconectarse de J4-2.
J4-2	+24V_DRY	+24V.
J4-3	+24V DRY	+24V.
J4-4	REMOTE_EPO_NO	Dispara el EPO al conectarse con J4-3.

NOTA

J4-1 y J4-2 deben estar conectado durante el funcionamiento normal.

Contacto Seco de Entrada para Generador

La función predeterminada de J5 es de interfaz para entrada de generador. Al conectar J5-2 con +24V (J5-1), el Sistema UPS Taurus MD 30-300kVA determina que un generador ha sido conectado al sistema. El diagrama del puerto se muestra en la figura 2-22; la descripción del puerto se muestra en la Tabla 2-10.

Figura 2-22, Diagrama del puerto de entrada para entrada de generador.

Tabla 2-10, Descripción del puerto de entrada para entrada de generador.

PUERTO	NOMBRE	FUNCIÓN
J5-1	+24V_DRY	+24V
J5-2	GEN CONNECTED	Estado de conexión con el generador.
J5-3	GND_DRY	Tierra para +24V.

Puerto de Entrada para Disyuntor de Baterías

Las función predeterminada para J6 y J7 es ser los puertos para disparar el disyuntor de baterías y para indicar su estado. La conexión de J6-1 y J7-1 dispara el disyuntor. El puerto J6-1 puede proporcionar una señal (+24VDC, 20mA) para disparar el disyuntor de la batería al activarse el EPO, o cuando sucede un EOD (fin de descarga). Conecte J6-2 y J7-1 a los puntos de contacto auxiliares del disyuntor de derivación después de hacer corto en J7-1 y J7-2, el Sistema UPS Taurus MD 30-300kVA detectará el estado del disyuntor de baterías. Cuando está cerrado, indica que las baterías están conectadas; cuando se encuentra abierto, emite una alarma indicando que las baterías no están conectadas. El diagrama del puerto se muestra en la Figura 2-23, y la descripción se muestra en la Tabla 2-11.

Figura 2-23, Puerto del disyuntor de baterías.

Tabla 2-11, Descripción del puerto del disyuntor de baterías.

PUERTO	NOMBRE	FUNCIÓN
J6-1	BCB_DRIV	Conductor del contacto del disyuntor de baterías. Proporciona una señal de +24V, 20mA.
J6-2	BCB_STATUS	Estado de contacto del disyuntor de baterías, conectado con la señal normalmente abierta del disyuntor de baterías.
J7-1	GND DRY	Tierra para +24V.
J7-2	BCB_Online	Entrada de disyuntor de baterías en línea (normalmente abierto). El disyuntor se encuentra en línea cuando la señal se conecta con J7-1.

NOTA

En ajustes predeterminados, cuando se usa un disyuntor con contactos auxiliares, conecte J6-2 y J7-1 a las terminales de contactos auxiliares para obtener el estado del disyuntor de baterías. Esta función debe ser habilitada haciendo corto en J7-1 y J7-2.

Interfaz de Contacto Seco de Salida para Advertencias de Batería

La función predeterminada para J8 es de interfaz de contacto seco de salida para alarma de voltaje bajo en batería. Cuando el voltaje de la batería es menor al indicado en los parámetros, se activará una señal auxiliar de contacto seco mediante un relé; antes que el Sistema UPS Taurus MD 30-300kVA muestre la alarma "Voltaje bajo en baterías", J8-1 y J8-3 se encuentran conectados por el relé, y J8-2 y J8-3 están desconectados. Cuando el Sistema UPS Taurus MD 30-300kVA exhibe la alarma "Voltaje bajo en Baterías" J8-1 y J8-3 son desconectados por el relé, y J8-2 y J8-3 son conectados.

El diagrama del puerto se muestra en la Figura 2-24, y la descripción se muestra en la Tabla 2-12.

Figura 2-24, Diagrama de la Interfaz de contacto seco de salida para advertencias de batería.

Tabla 2-12, Descripción de la interfaz de contacto seco de salida para advertencias de batería.

PUERTO	NOMBRE	FUNCIÓN
J8-1	BAT_LOW_ALARM_NC	Relé de advertencia de baterías (normalmente cerrado). Será abierto durante advertencias.
J8-2	BAT_LOW_ALARM_NO	Relé de advertencia de baterías (normalmente abierto). Será cerrado durante advertencias.
J8-3	BAT LOW ALARM GND	Terminal común.

Interfaz de Contacto Seco de Salida para Alarmas Generales

La función predeterminada de J10 es la interfaz de contacto seco de salida para alarmas generales. Cuando una o más advertencias son disparadas, estará activa una señal auxiliar de contacto seco mediante el aislamiento de un relé. El diagrama del puerto se muestra en la Figura 2-25, y la descripción se muestra en la Tabla 2-13.

Tabla 2-13, Descripción de interfaz de contacto seco para alarmas generales.

PUERTO	NOMBRE	FUNCIÓN
J9-1	GENERAL_ALARM_NC	El relé de advertencias integrado (normalmente cerrado) será abierto durante advertencias.
J9-2	GENERAL_ALARM_NO	El relé de advertencias integrado (normalmente abierto) será cerrado durante advertencias.
J9-3	GENERAL ALARM GND	Terminal común.

Interfaz de Contacto Seco de Salida para Advertencia de Falla de Energía a la Entrada

La función predeterminada para J10 es la interfaz de contacto seco de salida para advertencia de falla de energía a la entrada. Al presentarse esta falla, el sistema enviará información de falla de energía a la entrada, y proporcionará una señal auxiliar de contacto seco mediante el aislamiento de un relé. El diagrama de la interfaz se muestra en la Figura 2-26, y la descripción se muestra en la Tabla 2-13.

Figura 2-26, Diagrama de la interfaz de contacto seco de salida para advertencia de falla de energía a la entrada.

Tabla 2-13, Descripción de la interfaz de contacto seco de salida para advertencia de falla de energía a la entrada.

PUERTO	NOMBRE	FUNCIÓN
J10-1	UTILITY_FAIL_NC	El relé de advertencia de falla de energía a la entrada (normalmente cerrado) será abierto durante la advertencia.
J10-2 UTILITY_FAIL_NO		El relé de advertencia de falla de energía a la entrada (normalmente abierto) será cerrado durante la advertencia.
J9-3	GENERAL ALARM GND	Terminal común.

2.7.2 Interfaz de Comunicaciones

Los puertos RS232, RS485 y USB pueden proporcionar información del equipo que puede ser usada para puesta en marcha y mantenimiento por ingenieros autorizados, o puede ser usada para comunicaciones en redes o algún sistema integrado de monitoreo. El protocolo SNMP se usa en el sitio para comunicaciones (Opcional). La interfaz para tarjetas inteligentes se usa como extensión de la interfaz de contacto seco (Opcional).

3 Panel de Control del Sistema UPS Taurus MD 30-300kVA y Módulos de Potencia

3.1 Panel LCD para Módulos de Potencia

La estructura del panel LCD para módulos de potencia se muestra en la Figura 3-1.

Figura 3-1, Panel de control para módulos de potencia.

1: Indicador de Estado; 2: Pantalla LCD; 3: Tecla de APAGADO; 4: Tecla de FUNCIÓN

El panel de control para operadores está dividido en tres áreas funcionales: Indicador de estado, teclas de control y operación y pantalla LCD.

3.1.1 Indicadores LED

El indicador LED muestra colores verde y rojo para indicar el estado y las fallas con combinaciones de diferentes colores y el tiempo que duran. Las combinaciones se muestran en la Tabla 3-1.

	No.	Combinaciones de LEDs	Descripción		
	1	Verde, Intermitencia breve 1 (Verde por 1S, Apagado por 2S)	Arranque suave del rectificador.		
	2	Verde, Intermitencia breve 2 (Verde por 2S, Apagado por 1S)	Arranque suave del inversor.		
Channel of the second	3	Verde, Intermitencia media (Verde por 1S, Apagado por 5S)	Inversor de módulo de potencia en espera.		
100	4	Verde, Intermitencia Larga (Verde por 2S, Apagado por 10S)	Módulo de potencia en suspensión profunda (apagado)		
	5	Verde Constante	El Sistema UPS Taurus MD 30-300kVA está funcionando normalmente.		
	6	Rojo y verde, Alternando (Rojo por 1S, Verde por 5S)	Advertencias sobre la carga energizada por el inversor (Sin batería, batería en descarga, sobrecarga, etc.)		
	7	Rojo, Constante	Módulo de potencia en apagado por falla.		
	8	Rojo, Intermitencia media (Rojo por 1S, Apagado por 5S)	Apagado manualmente o por software de monitoreo.		
	9	Rojo, Intermitencia breve (Rojo por 1S, Apagado por 1S)	Cualquier situación excepto las anteriores.		

Fabla 3-1 Estados	v fallas de	diferentes	combinaciones
auta J-1, Lotados	y lanas uc	uncientes	comonaciones.

3.1.2 Teclas de Control y Operación

Las teclas de control y operación incluyen teclas de FUNC y tecla OFF que tienen diferentes funciones:

- a) La tecla FUNC se usa para navegar las páginas de la pantalla.
- b) La tecla OFF se usa principalmente para apagar el módulo de potencia, como se muestra en los siguientes procedimientos:
 - 1) Habilitar: Panel LCD \rightarrow Menú Operar \rightarrow Habilitar tecla "OFF" del
 - 2) Presione la tecla "OFF" por 3 segundos. El módulo de potencia será excluido del sistema.
- c) Presione la tecla "FUNC" para reestablecer la pantalla LCD.

módulo

3.1.3 Pantalla LCD

La pantalla LCD muestra la información del módulo de potencia y su estructura se muestra en la Figura 3-2.

Los usuarios pueden navegar la información de cada módulo de potencia presionando la tecla "FUNC" para girar las páginas.

Triángulo de selección resaltado bajo 44

La información de la entrada se presenta en el Área de Exhibición de Dígitos: voltaje trifásico y corriente trifásica.

Triángulo de selección resaltado bajo

La información de la salida se presenta en el Área de Exhibición de Dígitos: voltaje trifásico, corriente trifásica y porcentaje de carga trifásica.

Triángulo de selección resaltado bajo 🥮 PO

La información de las baterías es presentada en el Área de Exhibición de Dígitos: voltaje positivo de las baterías, corriente positiva de carga/descarga de las baterías, y voltaje positivo del bus.

Triángulo de selección resaltado bajo 🥮 ME

La información de las baterías es presentada en el Área de Exhibición de Dígitos: voltaje negativo de las baterías, corriente negativa de carga/descarga de las baterías, y voltaje negativo del bus.

• I resaltado:

Los códigos de fallas y advertencias se muestran en reciclaje en el Área de Exhibición de Dígitos (mostrados con guion corto cuando son menos de tres eventos). Los significados de los códigos se muestran en la Tabla 3-2.

Indican que se está presentando una falla.

Barra de Energía

- a) Intermitente: Arranque gradual del rectificador.
- b) Resaltada: El rectificador se encuentra funcionando normalmente.
- c) Apagada: Alguna otra situación.

Barra de Energía 🖾

- a) Intermitente: Arranque del inversor.
- b) Resaltada: Carga alimentada por el inversor.
- c) Apagada: Alguna otra situación.

🕨 Barra de Energía 🗳

- a) Intermitente: Voltaje bajo de baterías.
- b) Resaltada: Baterías cargando normalmente.
- c) Apagado: Baterías desconectadas.

🔹 Barra de Energía 🔚

- a) Resaltada: Modo de descarga de baterías.
- b) Apagada: Batería desconectada o sin ser cargada.

Unidades: Voltaje (V), Corriente (A), Porcentaje (%).

Cuando se cambian las páginas en un módulo de potencia, los otros módulos se actualizan en 2 segundos.

Código	Descripción	Código	Descripción	
16	Voltaje principal anormal	67	Polaridad de baterías invertida	
18	Falla de secuencia de fases en entrada de derivación	69	Inversor protegido	
20	Voltaje anormal en entrada de derivación	71	Neutro desconectado	
28	Frecuencia de entrada de derivación fuera de pista	74	Módulo apagado manualmente	
30	El número de transferencias (de inversor a derivación) en una hora excede el límite	81	Falla de cargador de baterías	
32	Salida en corto circuito	83	Pérdida de redundancia N+X	
34	Batería en EOD (fin de descarga)	85	Sistema EOD inhabilitado	
38	Falla de prueba de baterías	93	Falla de IO CAN de inversor	
41	Falla en mantenimiento de baterías	95	Falla de CAN de datos	
47	Falla de rectificador	97	Falla de reparto de potencia	
49	Falla de inversor	109	Puente de inversor abierto	
51	Exceso de temperatura en rectificador	111	Diferencia de temperatura	
53	Falla de ventilador	113	Corriente de entrada en desbalance	
55	Sobrecarga a la salida	115	Sobrevoltaje del BUS CC	
57	7 Tiempo expirado de sobrecarga a la salida		Falla en arranque suave de rectificador	
59	Exceso de temperatura en inversor	119	Relé abierto	
61	Inversor inhabilitado	121	Relé en corto circuito	
65	Baterías bajas	127	Transferencia manual a inversor	

Tabla 3-2, Códigos de fallas y advertencias.

3.2 Panel de Operador en el Sistema UPS Taurus MD 30-300kVA

La estructura del panel de control para operador en el gabinete se muestra en la Figura 3-2.

Figura 3-2, Panel de control para operador en el gabinete.

3.2.1 Indicadores LED

Existen 6 LEDs en el panel para indicar el estado de operación y fallas. La descripción de los indicadores se muestra en la tabla 3-3.

Indicador	Estado	Descripción
	Verde fijo	Rectificador normal en todos los módulos
	Verde intermitente	Rectificador normal para al menos un módulo, entrada principal normal
Rectificador	Rojo fijo	Falla en rectificador
	Rojo intermitente	Entrada principal anormal para al menos un módulo
	Apagado	Rectificador sin funcionar
	Verde fijo	Baterías cargándose
	Verde intermitente	Batería en descarga
Baterías	Rojo fijo	Batería anormal (falla de batería, sin batería o batería invertida) o convertidor de batería anormal (falla, sobre corriente o temperatura excesiva), fin de descarga
	Rojo intermitente	Voltaje bajo en baterías
	Apagado	Batería y convertidor de batería normales, baterías sin estar cargándose

T-1-1- 2 2	Deserie	.: 4 1	in dia dana	4.1	4 - 1 -
1adia 5-5,	Descrip	cion de	indicadores	ae	estado.

Indicador	Estado	Descripción		
	Verde fijo	Carga alimentada por derivación		
Derivación	Rojo fijo	Derivación anormal o fuera de rango normal, o falla en interruptor de derivación estática		
	Rojo intermitente	Voltaje anormal de derivación		
	Apagado	Derivación normal		
	Verde fijo	Carga alimentada por el inversor		
	Verde intermitente	Inversor encendido, inicio, sincronización o espera (Modo ECO) para al menos un módulo		
Inversor	Rojo fijo	Salida del sistema no proporcionada por el inversor, falla en inversor en al menos un módulo		
	Rojo intermitente	Salida del Sistema proporcionada por el inversor, falla en inversor en al menos un módulo		
	Apagado	Inversor sin funcionar en alguno de los módulos		
	Verde fijo	Salida del Sistema UPS Taurus MD 30-300kVA encendida y		
Carga	Rojo fij <mark>o</mark>	Tiempo expirado de sobrecarga, o salida en corto circuito, o sin energía a la salida		
	Rojo intermitente	Sistema UPS Taurus MD 30-300kVA con sobrecarga a la		
	Apagado	Sistema UPS Taurus MD 30-300kVA sin energía a la salida		
Estada	Verde fijo	Operación normal		
Estado	Rojo fijo	Falla		

Existen dos tipos distintos de alarma audible durante la operación del Sistema UPS Taurus MD 30-300kVA, como se muestra en la Tabla 3-4.

Tabla 3-4, Descripción	de las alarmas audibles.
------------------------	--------------------------

Alarma	Descripción
Dos alarmas breves y una larga	Cuando el Sistema presenta una alarma general (por ejemplo: falla de CA)
Alarma continua	Cuando el Sistema presenta fallas serias (por ejemplo: fusible quemado o falla de hardware)

3.2.2 Teclas de Control y Operación

Las teclas de control y operación incluyen cuatro teclas de 2, 10, 11 y 12, que son usadas junto con la pantalla LCD táctil. La descripción de su función se muestra en la Tabla 3-5.

Tecla de Función	Descripción	
EPO	Pulsación larga, corta la energía a la carga (apaga el rectificador, inversor, derivación estática y batería)	
ВҮР	Pulsación larga, transfiere a derivación (Presione el botón en la parte trasera de la puerta hacia arriba para habilitar, vea la Figura 4-2)	
INV	Pulsación larga, transfiere a inversor	
MUTE	Pulsación larga para cambiar entre apagar o encender las alarmas audibles.	

Tabla 3-5, Funciones de las teclas de control y operación.

Cuando la frecuencia a la entrada de derivación está fuera de sincronía, existe un periodo de interrupción (menor a 10ms) para transferir de derivación a inversor.

3.2.3 Pantalla LCD Táctil

Los usuarios pueden navegar la información, operar el Sistema UPS Taurus MD 30-300kVA y programar los parámetros a través de la pantalla LCD táctil, que es amigable al usuario.

Una vez que el sistema de monitoreo inicia el autodiagnóstico, el sistema muestra la página principal después del a página de bienvenida. La página principal se muestra en la Figura 3-4.

Figura 3-4, Página principal.

La pantalla principal consiste en una Barra de Estado, Pantalla de Información, Información de Advertencias y Menú Principal.

• Barra de Estado

La barra de estado contiene el producto, capacidad, modo de operación, número del módulo de potencia y la hora del sistema.

• Información de Advertencias

Muestra la información de advertencias en el sistema.

• Pantalla de Información

Los usuarios pueden revisar la información del gabinete en esta área. El voltaje de derivación, voltaje principal de entrada, voltaje de baterías, y voltajes de salida son presentados en forma de medidores.

Las cargas son presentadas en forma de gráfico de barras en porcentaje. El área verde representa cargas de menos de 60%, el área amarilla representa cargas de 60% - 100%, y el área roja representa cargas de más del 100%. El flujo de imita el flujo de la potencia.

Menú Principal

El menú principal incluye Gabinete, Módulo, Ajustes, Registro, Operar y Osciloscopio. Los usuarios pueden operar y controlar el Sistema UPS Taurus MD 30-300kVA, y navegar todos los parámetros medidos a través del menú principal.

La estructura del árbol del menú principal se muestra en la Figura 3-5.

Figura 3-5, Estructura del árbol del menú principal.

3.3 Menú Principal

El menú principal incluye Gabinete, Módulo, Ajustes, Registro, Operación y Osciloscopio, y se describe en los detalles siguientes.

3.3.1 Menú del Gabinete

Presione el ícono <u>Cabinet</u> (en el extremo inferior Izquierdo de la pantalla), y el Sistema mostrará la página del menú del gabinete, como se muestra en la Figura 3-6.

Figura 3-6, Menú del gabinete.

	SYSTEM BYPASS				- Título
		A	В	С.	
		50 V 100	300 300 300 300 300 300 300 300 300 300	300 M	
		125.5 V	126.5 V	126.8 V	Pantalla de
	بلصل بلصل	49.95 Hz	49.95 Hz	49.95 Hz	mormacion
		0.0 A	0.0 A	0.0 A	
Estado de		1.00 PF	1.00 PF	1.00 PF	
Operación	RAT OUTPUT	Running Ti	me of Bypass Fan:	5 H	
Información de la Versión	LCD VERLV 63. 1. 12 MTR VERLV 55.901.340	BYPASS MAI	N OUTPUT	LOAD BATTERY	> Submenú
	Home Cabinet	Module Setting	Log Op	erate Scope	

El Menú de Gabinete comprende sectores de título, pantalla de información, estado de operación, versión y submenú. Los sectores se describen a continuación.

Título

Exhibe la información del submenú seleccionado.

Estado de Operación

Los rectángulos mostrados en el diagrama mímico de flujo de corriente representan las varias rutas de potencia del Sistema UPS Taurus MD 30-300kVA y muestran el estado corriente de operación del Sistema UPS Taurus MD 30-300kVA. (Los rectángulos verdes indican que el bloque está funcionando normalmente, los blancos indican la ausencia del bloque y los rojos indican ausencia del bloque o falla).

• Información de Versión

Muestra la información de la versión del LCD y monitor.

Submenú

Incluye el submenú de derivación, entrada principal, salida, carga y baterías.

• Pantalla de Información

Muestra la información de cada submenú. La interfaz de cada submenú se muestra en la Figura 3-7.

Figura 3-7, Interfaz de submenú del gabinete.

(a) Interfaz de entrada principal.

SYSTEM	OUTPUT		AB			-	c	
		50		180 260 300		260 50 50 00 0	140 26 300	
		U.	120.0	V	120.0 V	12	20.0 V	
			49.95	Hz	49.95 Hz	49	.95 Hz	
			0.0	A	0.0 A		0.0 A	
BYP		+	0.00	PF	0.00 PF	C	.00 PF	
REC	INV OUTP	JT J	Ra	ted Outpu	120 V	50 Hz		
LCD VER V MTR VER V	63. 1. 55.901.	12 340	BYPASS	MAIN	OUTPUT	LOAD	BATTERY	
Home	Cabinet	Mod	'oo) Jule	o Ö Setting	Log	Operate	Scope	

(b) Interfaz de salida.

			А	В		C
			720.0	150%	-	
	1		100%	100%	<mark>•</mark>	100%
			60%	60%		60%
			0.0 %	0.0	%	0.0 %
			0.0 kW	0,0	kW	0.0 kW
BYP			0.0 kVA	0.0	kVA	0.0 kVA
REC	INV OUT	PUT	0.0 kVa	0.0	kVar	0.0 kVar
LCD VER: V MTR VER: V	63. 55.901	1. 12 340	BYPASS	MAIN OUTP		AD BATTERY
A Liama	Cabilan	n.		*	٥	ta Scone

(c) Interfaz de carga.

	BATTERY INI	FORMATION
÷):		100% 60% 30%
	+ 0.0 V 0.0 A	Capacity: 0.0 %
عار الصار إلصا	- 0.0 V 0.0 A	Remain T: M
	Not Connected	Battery: C
	Discharge Times: 1	Ambient: "C
BAT	Total/T Work: 0.0 Days	s,Discharge: 0.0 H

(d) Interfaz de baterías.

El submenú del gabinete se describe en los detalles abajo en la Tabla 3-6.

Submenú	Contenido	Significado
	V	Voltaje de fase
Entrada	Α	Corriente de fase
Principal	Hz	Frecuencia de entrada
	PF	Factor de potencia
	V	Voltaje de fase
Entrada de	Α	Corriente de fase
Derivación	Hz	Frecuencia de derivación
	PF	Factor de potencia
	V	Voltaje de fase
C-1:4-	A	Corriente de fase
Sanda	Hz	Frecuencia de salida
	PF	Factor de potencia
	kVA	Potencia aparente
Carra	kW	Potencia activa
Carga	kVar	Potencia reactiva
	%	Carga (El porcentaje de carga en el UPS)
	V	Voltaje positivo/negativo de las baterías
	А	Corriente positiva/negativa de las baterías
	Capacidad (%)	El porcentaje comparado con la capacidad de una batería nueva
Deterior	Remain T (Min)	Tiempo de autonomía restante
Baterias	Battery(℃)	Temperatura de las baterías
	Ambient(°C)	Temperatura ambiental
	Total Work T	Tiempo total de funcionamiento
	Total Discharge T	Tiempo total de descarga de las baterías

Tabla 3-6, Descripción de cada submenú del gabinete.

3.3.2 Menú de los Módulos de Potencia

Presione el ícono Module (en la parte inferior izquierda de la pantalla), y el Sistema mostrará la página del menú de Módulo, como se muestra en la Figura 3-8.

El Módulo comprende sectores de título, pantalla de información, información de módulo de potencia, información de versión y submenú. Los sectores se describen a continuación.

- Título Muestra el título del submenú del módulo de potencia seleccionado.
- **Pantalla de Información** Muestra información de cada submenú.

• Información de Módulo de Potencia

Los usuarios pueden escoger el módulo de potencia para navegar la información en el sector "Pantalla de Información".

El color de los rectángulos en el diagrama mímico de flujo de corriente representa las varias rutas de potencia del módulo de potencia y muestra el estado de operación corriente.

- (a) El rectángulo verde indica que el módulo está funcionando normalmente.
- (b) El rectángulo negro indica que el módulo es inválido.
- (c) El rectángulo rojo indica la ausencia del módulo o módulo en falla.

Por ejemplo, vea el módulo #9 . Indica que el Sistema UPS Taurus MD 30-300kVA está en modo normal, y que el rectificador e inversor están funcionando normalmente. La batería no está conectada.

• Información de Versión

Muestra la información de versión del rectificador y el inversor para el módulo seleccionado.

Submenú

El submenú incluye Entrada, Salida, Carga, INFO y S-CODE.

Los usuarios pueden acceder la interfaz de cada submenú tocando el ícono directamente. Cada interfaz del submenú se muestra en la Figura 3-9.

(a) Interfaz de salida.

10		A	В	e
9 14 4				
8	-010-	150%	150%	150%
7	-0-0-	100%	100%	100%
6	- or or	60%	60%	60%
5				
4	-00	0.0 %	0.0 %	0.0 %
3		0.0 kW	0.0 kW	0.0 kW
2		0.0 kVA	0.0 kVA	0.0 kVA
1-10-11-2	0 21 - 30	120.0 V	120.0 V	120.0 V
REC VER:V 55	1. 34	INPUT OUTPU	UT LOAD	INFO, S-COD

(b) Interfaz de carga.

(c) Interfaz de información.

9 #MODULES-CODE

-	- messele		-	
10	-	the state		1221-0001-0000-0120 0000-0000-1102-1000
9	100 00		A0	0000-0000-0000 0000-0000 0000-0000-0000
8	-	-010-	A1	0000-0000-0000 0000-0000 0000-0000-0000
7	1	-0_0-	A2	0000-0000-0000 0000 0000-0000-0000
6		-0-0-	RO	0000-0000-0000 1011-1101-1111-1111
0		-0-0-	R1	0000-0000-0000 0000 0000-0000-0000
5			R2	1000-0010-0111-0000 0000-0100-0000-0111
4	1		R3	0000-0100-1100-1000 0000-0001-0000-0000
3	1		10	1111-1111-1111-1111 1111-1011-1111-1111
2	1		11	0000-0000-0000 0000-0000-0000-0000
1			12	0000-0000-0000-0001 0000-0001-0000-0000
	10 11 - 20 2	21 30	13	0000-0001-0000-0000 1000-0011-1100-0100
REC	VER:V 55. VER:V 55.	1. 34 1. 35		INPUT OUTPUT LOAD INFO. S-CODE
н	lome Cabine	et	Mod	ule Setting Log Operate Scope

(d) Interfaz de S-CODE.

Los submenús de Módulo se describen abajo en detalle en la Tabla 3-7.

Tabla 3-7, Descripción de cada submenú de Módulo.

Submenú	Contenido	Significado		
	V	Voltaje de entrada de fase para el módulo seleccionado		
E (1	А	Corriente de entrada de fase para el módulo seleccionado		
Entrada	Hz	Frecuencia de entrada para el módulo seleccionado		
	PF	Factor de potencia de entrada para el módulo seleccionado		
	V	Voltaje de salida de fase para el módulo seleccionado		
G_1:4-	А	Corriente de salida de fase para el módulo seleccionado		
Sanda	Hz	Frecuencia de salida para el módulo seleccionado		
	PF	Factor de potencia de salida para el módulo seleccionado		
	V	Voltaje de la carga del módulo seleccionado		
	%	Carga (El porcentaje del modulo seleccionado)		
Carga	KW	Potencia activa		
	KVA	Potencia aparente		
	BATT+(V)	Voltaje de las baterías (positivo)		
	BATT-(V)	Voltaje de las baterías (negativo)		
	BUS(V)	Voltaje del BUS (positivo y negativo)		
	Charger(V)	Voltaje del cargador (positivo y negativo)		
Información	Fan Time	Tiempo total de operación de los ventiladores del módulo seleccionado		
	Inlet Temperature(°C)	Temperatura de la entrada de aire del módulo seleccionado		
	Outlet Temperature(°C)	Temperatura de la salida de aire del módulo seleccionado		
S-Code	Fault Code	Para el personal de mantenimiento		

3.3.3 Menú de Ajustes

Toque el ícono (en la parte inferior de la pantalla), y el sistema entrará a la página del Menú de Ajustes, como se muestra en la Figura Figure 3-10.

	Date Fo	rmat	DATE & TIME	
	YY-MM-DD MM-DI	D-YY DD-MM-YY	LANGUAGE	
	Time Se	tting	сомм.	
	Current Time	2019-01-11 09:51:08	USER	
Interfaz de Ajustes	Plea	se Confirm Settings 📃 🐳	BATTERY	> Submenú
			SERVICE	
			RATE	
			CONFIGURE	
	Home Cabinet Module	oQ C	Operate Scope	

Figura 3-10, Menú de ajustes.

Los submenús están listados en el extremo derecho de la página de Ajustes. El usuario puede entrar cada una de las interfases de ajustes tocando el ícono relevante.

3.3.3.1 Ajuste de Fecha y Hora

El usuario puede seleccionar el formato de fecha y establecer la fecha y hora correctas. La interfaz de ajuste de fecha y hora se muestra en la Figura 3-11.

	Datero	inat		
YY-MM-DD	MM-DE	D-YY	DD-MM-Y	LANGUAG
	Time Se	tting	сомм.	
Cũ	irrent Time	2019-01	1-11 09:51:08	USER
	Pleas	se Confirm	Settings 🛛 😽	BATTER
	Pleas	se Confirm (Settings 🛛 🐳	BATTER
	Pleas	se Confirm (Settings 🛛 🗸	BATTER

Figura 3-11, Interfaz de ajuste de fecha y hora.

3.3.3.2 Ajuste de Idioma

ajuste se muestra en la Figura 3-13.

El usuario puede seleccionar el idioma de las tres opciones disponibles, considere que el grupo solo contiene 3 tipos de idiomas, si el usuario requiere una combinación diferente de idiomas, favor de informar al fabricante con anticipación. La interfaz de ajustes se muestra en la Figura 3-12.

Figura 3-12, Interfaz de ajuste de idioma.

El Sistema UPS Taurus MD 30-300kVA proporciona los puertos RS232 y RS485 de comunicaciones, y el usuario puede agregar una tarjeta SNMP opcional. Si se utiliza el puerto RS232, seleccione el protocolo "Modbus"; si se utiliza el puerto RS485 o la tarjeta SNMP, seleccione el protocolo "SNT". La interfaz de

3.3.3.4 Ajuste del Usuario

El usuario puede ajustar el voltaje de salida por encima o abajo del voltaje nominal, la escala mínima es 1V. Adicionalmente, el usuario también puede establecer el rango de voltaje y frecuencia de la entrada de derivación. La interfaz de ajustes se muestra en la Figura 3-14.

Figura 3-14, Interfaz de ajuste del usuario.

3.3.3.5 Ajuste de Baterías

El ajuste de baterías necesita ser llevado a cabo después de apagar el sistema por primera vez o después de hacer cualquier cambio en las baterías. La configuración de baterías se puede llevar a cabo a través del panel de control LCD.

• Ajuste de Tipo de Batería

El tipo de batería solo puede ser configurado a través del software de monitoreo. Actualmente, el Sistema es compatible con baterías de ácido-plomo (VRLA) y baterías de fosfato de hierro-litio (LFPB).

Ajuste de Cantidad de Baterías

1) Ajuste de Cantidad para Baterías VRLA

El voltaje nominal para un bloque de baterías es de 12V, y está compuesto de 6 celdas (cada celda de 2V). Para el ajuste, como se muestra en la Figura 5-2, la cantidad de baterías es de 20, que significa que hay 20 bloques de baterías y ambas cadenas, positiva y negativa, tienen 10 bloques cada una.

En caso de utilizar baterías de celda de 2V (generalmente de alta capacidad), la cantidad de baterías debe ser igual al bloque de baterías. La batería de celda a usarse debe ser de 120 celdas (6*20), con cadenas positiva y negativa de 60 celdas cada una.

2) Ajuste de Cantidad para Baterías LFPB

Para las celdas de cada batería LFPB, el voltaje es 3.2V; cada bloque de batería consiste en una celda. Para LFPB, la cantidad debe ser 76. Ambas cadenas, positivo y negativo son de 38 celdas.

• Ajuste de Capacidad de Baterías

El usuario puede establecer el valor de la capacidad del bloque de baterías. Por ejemplo, si el sistema está configurado con 20 bloques de baterías de 12V 100AH, la "Capacidad de baterías" debe ser 100AH; si se usan 120 celdas de 2V 1000AH, el ajuste debe ser 1000AH.

En caso de tener más de una cadena de baterías en paralelo, el ajuste del valor de la capacidad de batería debe ser multiplicado por la cantidad de cadenas. Por ejemplo, si la configuración es de dos cadenas de 20 bloques de baterías de 12V 100AH, el ajuste de capacidad de baterías debe ser 200AH.

El Sistema limita la corriente de carga de acuerdo con el valor de capacidad de baterías. Para las baterías VRLA, el límite de corriente de carga es 0.2C, y para LFPB es de 0.3C.

• Ajuste de Carga de Flote e Impulso

En carga de impulso, el Sistema carga las baterías con corriente constante. Después de un periodo, el Sistema entrará en carga de flote.

Para baterías VRLA, el voltaje de carga de flote predeterminado es de 2.25V/celda, y el voltaje de carga de impulso predeterminado es de 2.35V/celda.

Para baterías LFPB, el voltaje de carga de flote y de impulso predeterminado es de 3.45V/celda.

• Ajuste de Voltaje EOD (Fin de Descarga)

El voltaje EOD 0.6c es el voltaje EOD cuando la corriente de descarga es de más de 0.6C; el voltaje EOD 0.15C es el voltaje EOD cuando la corriente de descarga es de menos de 0.15C. El voltaje EOD disminuye linealmente a medida que la corriente del voltaje EOD aumenta de 0.15C a 0.6C, como se muestra en la Figura 3-15.

Para baterías VRLA, se sugiere establecer el voltaje de celda a 1.65V/celda a 0.6C, y a 1.75V/celda a 0.15C.

Para baterías LFPB, se sugiere establecer el voltaje de celda a 2.7V/celda a ambas 0.6C y 0.15C.

Límite de Porcentaje de Corriente de Carga

Este ajuste es para limitar la potencia de carga, la potencia de carga máxima es del 20% de la potencia activa de la capacidad especificada del Sistema UPS Taurus MD 30-300kVA. Si la cantidad de baterías es de 40 (40 bloques de baterías de 12V), la corriente máxima que un módulo de potencia puede proporcionar de acuerdo con el límite (en porcentaje) se muestra en la Tabla 3-8.

La corriente real de carga también está limitada por la capacidad de las baterías. Refiérase al ajuste de capacidad de baterías.

Límite de Consignte (9/)	Corriente Máx. de Carga (A)
Ennite de Corriente (%)	Módulo de Potencia de 30KVA
1	0.95
2	1.91
3	2.87
4	3.82
5	4.78
6	5.74
7	6.70
8	7.65
9	8.61
10	9.57
11	10.53
12	11.48
13	12.44
14	13.40
15	14.36
16	15.31
17	16.27
18	17.23
19	18.19
20	19.14

Tabla 3-8, Límites de corriente por módulo de potencia.

• Compensación por Temperatura en Baterías

El ajuste "Compensado por Temperatura en Baterías" es una función opcional, y requiere la configuración de un sensor de temperatura NTC conectado al puerto de contacto seco J2.

El principio es que el Sistema UPS Taurus MD 30-300kVA ajusta el voltaje de carga de acuerdo con las variaciones de temperatura ambiental en las baterías, la temperatura estándar es 25°C. Cuando la temperatura se eleva a 26°C, y el valor prestablecido es 3, el Sistema UPS Taurus MD 30-300kVA reducirá el voltaje de carga; la reducción de voltaje es de 18mV/bloque. De la misma forma, si la temperatura cae a 24°C, el Sistema UPS Taurus MD 30-300kVA aumentará el voltaje de carga.

Límite de Tiempo de Carga de Impulso

Este parámetro es para establecer el tiempo de carga de impulso. El Sistema transfiere a carga de flote cuando el tiempo de carga de impulso expira. El rango de ajuste es de 1 a 48 horas.

Periodo para Carga Automática de Impulso

Este parámetro es para establecer el periodo para carga automática de impulso. Cuando el tiempo establecido expira, el Sistema aplica carga de impulso a las baterías. Se sugiere aplicar carga de impulso a las baterías cada tres meses, y establecer el periodo a 4,320 horas.

• Periodo de Descarga Automático para Mantenimiento

Cuando se llega al periodo de descarga automático para mantenimiento, el Sistema descarga las baterías. Esta función se debe habilitar desde el software de monitoreo.

El voltaje EOD de descarga automática para mantenimiento es 1.05 veces el voltaje EOD normal.

DATE & TIM	A	VRI	Battery Type
		20	Battery Number
LANGUAGE	AH	100	Battery Capacity
		2.25	Float Charge Voltage/Cell
COMM.	V	2.30	Boost Charge Voltage/Cell
h di secol	V	1.65	EOD Voltage/Cell,@ 0.6C Current
USER		1.75	EOD Voltage/Cell,@ 0.15C Current
DATTON	%	5	PM Charge Current Percent Limit
BATTERY	mV/°C	3.0	Battery Temperature Compensate
SERVICE	Hour	12	Boost Charge Time Limit
Sentree	Hour	2160	Auto Boost Period
RATE	Hour	720	Auto Maintenance Discharge Period
-	A	8	Reserved
CONFIGUR	~	ettings	Please Confirm S

Figura 3-16, Interfaz de ajuste para baterías.

(a) Ajustes para baterías VRLA.

ATE & TIME	m	Lithiu	tery Type	Batt		
		76	Number	Battery		
ANGUAGE	AH	100	Capacity	Battery		
		3.45	tage/Cell	t Charge Volt	Floa	
сомм.		3.45	tage/Cell	t Charge Volt	Boos	
	V	2.65	Current	e/Cell,@ 0.60	EOD Voltag	
USER		2.7	Current	/Cell,@ 0.150	EOD Voltage,	
DATTERN		10	ent Limit	Current Perc	PM Charge	
BATTERY	mV/°C	3.0	npensate	perature Con	Battery Tem	
SERVICE	Hour	12	ime Limit	ost Charge Ti	Bo	
SERVICE	Hour	2160	st Period	Auto Boo		
RATE	Hour	720	ge Period	nce Discharg	uto Maintena	A
		0	Reserved	F		
ONFIGURE	~	Please Confirm Settings				
2000	۵	2	οÔ	100 001		
	O perate	∠ Log	o O Setting	Ise=sel Module	Cabinet	A Home

(b) Ajustes para baterías LFPB.

El usuario puede seleccionar el modo del sistema. De ser un sistema en paralelo, el usuario puede configurar los parámetros de paralelo. Adicionalmente, el usuario puede establecer la cantidad de módulos para redundancia y el tiempo de retraso para pasar de modo de baterías a modo normal. La interfaz de ajuste se muestra en la Figura 3-17.

^{3.3.3.6} Ajuste de Servicio

Figura 3-17, Interfaz de ajuste para servicio.

DATE & TIME		System Mode							
	P_LBS	LBS	P_ECO	S_ECO	Parallel	Single			
LANGUAGE		1	el Number	Para					
сомм.		0	Cabinet ID						
	Hz/Sec	3.0	Slew Rate						
USER	Hz	5.0	on Window	nchronizati	Syr				
BATTERY		0	le Number	ndant Mod	Redur				
		cond)	o Utility (See	om Battery	Delay fro				
SERVICE	10		5						
DATE		OD	Mode After	Auto Star	System				
KATE	itart	Not S	/pass	Only B	mal	Nor			
CONFIGURE	~	ettings	ise Confirm S	Ple					
	O	2	¢¢	100-001					

Los submenús se describen en detalle en la Tabla 3-9.

Tabla 3-9, Descripciones de cada submenú de ajuste.

Submenú	Contenido	Significado	
Fecha y Hora	Ajuste de formato de fecha	Tres formatos: (a) año/mes/día, (b) mes/día/año, (c) día/mes/año	
	Ajuste de hora	Ajuste de hora	
	Idioma corriente	Idioma en uso	
Idioma	Selección de idioma	Chino simplificado e inglés. (El ajuste se aplica inmediatamente después de tocar el ícono de idioma)	
	Dirección del dispositivo	Ajuste de la dirección de comunicación	
Comms	Selección de protocolo RS232	Protocolo SNT, protocolo ModBus, protocolo YD/T y Dwin (Para uso en fábrica)	
	Tasa de Baudios	Ajuste de tasa de Baudios para SNT, ModBus y YD/T	
	Modo Modbus	Ajuste de modo para Modbus: ASCII y RTU	
	Paridad Modbus	Ajuste de la paridad para Modbus	
	Ajuste de voltaje de salida	Ajuste de voltaje de salida	
Usuario	Limitación de incremento de voltaje de derivación	Limitación de incremento de voltaje de operación para derivación, seleccionable a +10%, +15%, +20%, +25%	
	Limitación de decremento de voltaje de derivación	Limitación de decremento de voltaje de operación para derivación, seleccionable a - 10%, -15%, -20%, -30%, -40%	
	Limitación de frecuencia de derivación	Frecuencia de operación permitida para derivación, ajustable a +/- 1Hz, +/- 3Hz, +/- 5Hz	

Submenú	Contenido	Significado	
Periodo para mantenimiento de filtro de polvo		Ajuste de periodo para mantenimiento de filtro de polvo	
	Cantidad de baterías	Ajuste de cantidad de baterías (12V)	
	Capacidad de las baterías	Ajuste del valor AH de las baterías	
	Voltaje de carga de flote /Celda	Ajuste de voltaje de flote para celdas de las baterías (2V)	
	Voltaje de carga de impulso /celda	Ajuste del voltaje de impulso para celdas de baterías (2V)	
Baterías	Voltaje EOD (fin de descarga) /celda, @ corriente de 0.6C	Voltaje EOD para celdas de baterías, @ corriente de 0.6C	
	Voltaje EOD (fin de descarga) /celda, @ corriente de 0.15C	Voltaje EOD para celdas de baterías, @ corriente de 0.15C	
	Límite de porcentaje de corriente de carga	Corriente de carga (porcentaje de la corriente nominal)	
	Compensado por temperatura en baterías	Coeficiente para compensación de carga de baterías por temperatura	
	Límite de tiempo de carga de impulso	Ajuste de tiempo de carga de impulso	
	Periodo para carga automática de impulso	Ajuste del periodo para carga automática de impulso	
	Periodo de descarga automático para mantenimiento	Ajuste del periodo de descarga automático para mantenimiento	
Servicio	Modo del sistema	Ajuste del modo del sistema: Individual, paralelo, Individual ECO, paralelo ECO, individual LBS, paralelo LBS	
Tasa	Configuración de parámetros nominales	Para uso de fábrica solamente	
Configuración	Configuración del sistema	Para uso de fábrica solamente	

NOTA

El usuario tiene varios tipos de permiso para configuración de ajustes:

- (a) Para Fecha y Hora, Idioma, y Comunicaciones, el usuario los puede establecer sin una contraseña.
- (b) Para Usuario, se requiere una contraseña de nivel-1 y los ajustes deben ser establecidos por el ingeniero de puesta en marcha.
- (c) Para Batería y Servicio, se requiere una contraseña de nivel-2 y los ajustes deben ser establecidos por el personal después de servicio.
- (d) Para Tasa y Configuración, se requiere una contraseña de nivel-3 y los ajustes se establecen en la fábrica solamente.
- La "C" significa número de Amperios. Por ejemplo, si la batería es de 100AH, entonces C=100A.

• Asegúrese que la cantidad de baterías configurada vía el menú o el software de monitoreo sea exactamente igual a la cantidad instalada. Cualquier discrepancia puede ocasionar daños serios a las baterías o al Sistema UPS Taurus MD 30-300kVA.

3.3.4 Menú del Registro

Toque el ícono (en la parte inferior de la pantalla), y el Sistema entrará en la interfaz de registros, como se muestra en la Figura 3-12. El registro se muestra en orden cronológico inverso (el evento #1 será el más reciente), y muestra información de eventos, alertas y fallas, así como la fecha y hora en la que sucedieron y desaparecieron.

10.		TIV	
1	0 # Load On UPS-Set	2019 - 1 - 1	0:2:27
2	0 # Load On Bypass-Set	2019 - 1 - 1	0:0:27
3	9 # Module Inserted-Set	2019 - 1 - 1	0:0:4
4	0 # Utility Abnormal-Set	2019 - 1 - 1	0:37:34
5	0 # Byp Freq Over Track-Set	2019 - 1 - 1	0:37:34
6	0 # No Load-Set	2019 - 1 - 1	0:37:34
7	0 # Bypass Volt Abnormal-Set	2019 - 1 - 1	0:37:34
8	0 # Load On Bypass-Set	2019 - 1 - 1	0:37:34
9	0 # Load On UPS-Set 2019 - 1 - 1 0:		0:4:7
10	9 # Module Inserted-Set	2019 - 1 - 1	0:1:44
		Total Log Iter	ns 45
~			

Figura 3-12, Menú de registros.

Cada registro de eventos en la tabla incluye el número de secuencia, el contenido del evento y la marca de tiempo cuando ocurrió.

- Número de Secuencia Los números de secuencia de los eventos.
- Contenido del Evento Muestra la información de los eventos, alertas y fallas (0# significa que el evento es en relación al gabinete, n# significa que la información es enviada por el módulo de potencia "n").
- Tiempo del Evento La hora en la que ocurrió el evento.
- Total de Eventos en el Registro Muestra el número total de eventos. El Sistema puede almacenar 895 eventos. Si el número de eventos excede 895, el Sistema borrará los eventos más viejos.

Mueve la lista de eventos hacia arriba/abajo para revisar la información de los eventos.

La Tabla 3-9 abajo muestra todos los eventos y da una breve explicación.

Tabla	3-9.	Lista	de	eventos.
ruoiu	5),	Libiu	uv	eventos.

No.	Evento en el UPS	Descripción
1	Eliminación de Fallas	Falla eliminada manualmente.
2	Borrar Registro	Eliminación manual del registro histórico.
3	Carga en UPS	El inversor alimenta la carga.
4	Carga en Derivación	La carga está alimentada por la entrada de derivación.
5	Sin Carga	No hay carga conectada.
6	Impulso de Baterías	El cargador está funcionando en modo de carga de impulso.
7	Flote de Baterías	El cargador está funcionando en modo de carga de flote.
8	Descarga de Baterías	Las baterías están siendo descargadas.
9	Baterías Conectadas	Las baterías están conectadas.
10	Baterías Desconectadas	Las baterías aún no están conectadas.
11	Disyuntor de Mantenimiento Cerrado	El disyuntor manual de mantenimiento está encendido.
12	Disyuntor de Mantenimiento Abierto	El disyuntor manual de mantenimiento está apagado.
13	EPO	Apagado de emergencia.
14	Módulo en Menos	La capacidad de módulos de potencia disponible es menor a la capacidad de la carga. Reduzca la capacidad de la carga o agregue módulos de potencia para asegurar que la capacidad de los módulos sea suficiente.
15	Entrada de Generador	Existe un generador conectado y la señal está siendo enviada al Sistema UPS Taurus MD 30-300kVA.
16	Entrada Principal Anormal	La energía utilitaria es anormal. El voltaje o frecuencia de la entrada principal excede el valor máximo o mínimo y resulta en apagado del rectificador. Revise el voltaje de fase de entrada del rectificador.
17	Error de Secuencia de Derivación	La secuencia de voltaje de derivación está invertida. Revise si los cables de potencia de entrada están conectados correctamente.
18	Voltaje Anormal de Derivación	La alarma es disparada por una rutina de software del inversor cuando la amplitud o frecuencia del voltaje de derivación excede el límite. La alarma se restablecerá automáticamente si el voltaje de derivación se vuelve normal. Primero revise si existe alguna alarma relevante, como "disyuntor de derivación abierto", "error de secuencia de derivación" y "pérdida de neutro a la entrada". Si existe alguna alarma relevante, primero resuelva la alarma. 1. A continuación, revise y confirme que el voltaje y frecuencia de derivación mostrado en la pantalla LCD estén dentro del rango establecido. Tome nota que el voltaje y frecuencia nominales son especificados respectivamente por "Voltaje de Salida" y "Frecuencia de Salida". Si el voltaje mostrado es anormal, mida el voltaje y frecuencia de derivación. Si la medición es anormal, revise la fuente de energía externa de derivación para incrementar el límite alto de derivación de acuerdo con las sugerencias al usuario.

No.	Evento en el UPS	Descripción
19	Falla de Módulo de	Falla del módulo de derivación. Esta falla se bloquea hasta que la unidad sea apagada. Puede deberse también a falla en los
	Derivacion	ventiladores del módulo de derivación.
Calman an Midala Ia	La corriente de derivación se encuentra sobre el límite. Si la	
20	Sobrecarga en Modulo de	corriente de derivación se encuentra debajo de 135% de la corriente
	Derivación	nominal, el sistema emite una alarma, pero no toma acción.
0.1	Tiempo de Sobrecarga en	El estado de sobrecarga en derivación continúa y el tiempo de
21	Derivación Expirado	sobrecarga expira.
22	Frecuencia de Derivación Sobre Pista	 Esta alarma es disparada por una rutina de software del inversor cuando la frecuencia del voltaje de derivación excede el límite. La alarma se restablecerá automáticamente si el voltaje de derivación vuelve a la normalidad. Primero revise si existe alguna alarma relevante, como "disyuntor de derivación abierto", "error de secuencia de derivación" y "pérdida de neutro a la entrada". Si existe alguna alarma relevante, primero resuelva la alarma. 1. A continuación, revise y confirme que la frecuencia de derivación mostrada en la pantalla LCD esté dentro del rango establecido. Tome nota que la frecuencia nominal es especificada "Frecuencia de Salida". 2. Si el voltaje mostrado es anormal, mida la frecuencia de derivación. Si la medición es anormal, revise la fuente de energía externa de derivación. Si la alarma sucede frecuentemente, use el software de configuración para incrementar el límite alto de derivación de acuerdo con las sugerencias al usuario.
23	Límite de Transferencias Excedido	La carga se encuentra en derivación debido a que la transferencia y re-transferencia de sobrecarga a la salida está sujeta al parámetro establecido dentro de una hora. El sistema puede recobrarse automáticamente y transferirá nuevamente al inversor dentro de una hora.
24	Corto Circuito a la Salida	Corto circuito a la salida. Primero revise y confirme si existe algún problema con las cargas. A continuación, revise y confirme si existe algún problema con las terminales, enchufes o alguna otra unidad de distribución de potencia. Si la falla es resuelta, presione "Eliminar Falla" para reiniciar el Sistema UPS Taurus MD 30-300kVA.
25	EOD de Baterías	El inversor es apagado debido a voltaje bajo en baterías. Revise el estado de falla de energía de la entrada principal y recobre la entrada principal de energía a tiempo.
26	Prueba de Baterías	El Sistema transfiere a baterías por 20 segundos para revisar que las baterías se encuentren normales.
27	Prueba de Baterías OK	La prueba de baterías es satisfactoria.
28	Mantenimiento de Baterías	El Sistema transfiere a baterías hasta llegar a un voltaje de 1.1 * EOD para proporcionar mantenimiento a la cadena de baterías.
29	Mantenimiento de Baterías OK	Mantenimiento exitoso de baterías.
30	Módulo Insertado	El módulo de potencia está insertado en el Sistema.
31	Salida de Módulo	El módulo de potencia ha sido retirado del Sistema.
32	Falla de Rectificador	Falla de rectificador en módulo de potencia N#. El rectificador presenta una falla y resulta en el apagado del rectificador y descarga de baterías.
33	Falla de Inversor	Falla de inversor en módulo de potencia N#. El voltaje de salida del inversor se encuentra anormal y la carga es transferida a derivación.

No.	Evento en el UPS	Descripción
34	Temperatura Excesiva en Rectificador	 Temperatura excesiva en rectificador de módulo de potencia N#. La temperatura de los IGBTs en el rectificador es demasiado alta para que el rectificador continue funcionando. Esta alarma es disparada por la señal del dispositivo de monitoreo de temperatura montado en los IGBTs del rectificador. El Sistema UPS Taurus MD 30-300kVA se recupera automáticamente cuando la señal de temperatura excesiva desaparece. Si existe una temperatura excesiva revise: Si a temperatura ambiental es demasiado alta. Si e canal de ventilación está obstruido. Si existe falla en los ventiladores. Si el voltaje a la entrada es demasiado bajo.
35	Falla de Ventiladores	N#
36	Sobrecarga a la Salida	 Sobrecarga en salida de módulo de potencia N#. Esta alarma aparece cuando la carga se incrementa arriba del 100% de la capacidad nominal. La alarma se restablece automáticamente una vez que la condición de sobrecarga desaparece. 1. Revise qué fase presenta la sobrecarga en la carga (%) mostrada en la pantalla LCD para confirmar si la alarma es verdadera. 2. Si la alarma es verdadera, mida la corriente de salida para confirmar si el valor mostrado es correcto. Desconecte cargas no críticas. En un Sistema en paralelo, esta alarma será disparada si la carga está severamente desbalanceada.
37	Tiempo Expirado de Sobrecarga en Inversor	Tiempo expirado de sobrecarga en inversor de módulo de potencia N#. El estado de sobrecarga continúa y el tiempo de sobrecarga expira. Nota: La fase con más carga indicará tiempo de sobrecarga expirado primero. Cuando el temporizador está activo, la alarma "unidad sobrecargada" también deberá estar activa pues la carga está arriba del valor nominal. Cuando el tiempo expira, el switch del inversor se abre y la carga es transferida a derivación. Si la carga disminuye a menos de 95%, después de dos minutos el Sistema transferirá a modo de inversor nuevamente. Revise el (%) de carga mostrado en la pantalla LCD para confirmar que esta alarma sea verdadera. Si la pantalla LCD indica que efectivamente existe una condición de sobrecarga, revise la carga y confirme si el UPS está sobrecargado antes que la alarma suceda
38	Temperatura Excesiva en Inversor	 Temperatura excesiva de inversor en módulo de potencia N#. La temperatura en el disipador de calor del inversor es demasiado alta para que el inversor continue funcionando. Esta alarma es disparada por la señal del dispositivo de monitoreo de temperatura montado en los IGBTs del inversor. El Sistema UPS Taurus MD 30-300kVA se recupera automáticamente cuando la señal de temperatura excesiva desaparece. Si existe temperatura excesiva, revise: Si a temperatura ambiental es muy alta. Si e ducto de ventilación está obstruido. Si existe alguna falla de ventiladores. Si el tiempo de sobrecarga ha expirado.
39	Encendido del Sistema UPS Taurus MD 30- 300kVA Inhabilitado	 Inhabilita el Sistema para transferir de derivación a inversor. Revise: 1. Si la capacidad de los módulos de potencia es suficiente para soportar la carga. 2. Si el rectificador está listo. 3. Si el voltaje de derivación es normal.
40	Transferencia Manual a Derivación	Transferencia manual a derivación.

No.	Evento en el UPS	Descripción
41	Escape de Transferencia Manual a Derivación	Comando de escape de "transferencia manual a derivación". Si el Sistema UPS Taurus MD 30-300kVA ha sido transferido manualmente a derivación, este comando habilita al Sistema UPS Taurus MD 30-300kVA para transferir a inversor.
42	Voltaje Bajo de Baterías	El voltaje de las baterías está bajo. Antes del fin de descarga, la advertencia de voltaje bajo de baterías debe ocurrir. Después de esta advertencia preliminar, la baterías deberán tener 3 minutos de capacidad para soportar la carga completa.
43	Batería Inversa	Los cables de las baterías están conectados incorrectamente.
44	Protección de Inversor	 Protección del inversor del módulo de potencia N#. Revise: Si el voltaje del inversor es anormal. Si el voltaje del inversor es muy diferente al voltaje de otros módulos; de ser así, ajuste el voltaje de inversor del módulo de potencia por separado.
45	Pérdida de Neutro a la Entrada	El conductor de neutro de la entrada principal ha sido perdido o no se detecta. Para Sistemas UPS trifásicos, se recomienda el uso de disyuntores de 3 polos entre la fuente de energía de alimentación y el Sistema UPS Taurus MD 30-300kVA.
46	Falla de Ventilador en Derivación	Por lo menos uno de los ventiladores del módulo de derivación ha fallado.
47	Apagado Manual	El módulo de potencia N# ha sido apagado manualmente. El módulo de potencia apaga el rectificador y el inversor, y el inversor no proporciona energía a la salida.
48	Carga de Impulso Manual	El cargador es forzado manualmente a funcionar en modo de carga de impulso.
49	Carga de Flote Manual	El cargador es forzado manualmente a funcionar en modo de carga de flote.
50	UPS Bloqueado	Apagado manual de módulo de potencia prohibido.
51	Error de Cable de Paralelo	 Error de cables de paralelo. Revise: 1. Si uno o más cables de paralelo están desconectados o conectados incorrectamente. 2. Si los cables de paralelo se encuentran en buenas condiciones.
52	Pérdida de Redundancia N+X	La redundancia N+X ha sido perdida. No existen módulos de potencia para redundancia X en el Sistema.
53	Sistema EOD Inhabilitado	El Sistema ha sido inhabilitado para proporcionar energía después que la batería llega a EOD (fin de descarga).
54	Falla en Prueba de Baterías	Prueba de baterías fallada. Revise si el Sistema UPS Taurus MD 30- 300kVA es normal y el voltaje de baterías se encuentra arriba del 90% del voltaje de flote.
55	Falla de Mantenimiento de Baterías	 Revise: 1. Si el Sistema UPS Taurus MD 30-300kVA es normal y no hay alarmas. 2. Si el voltaje de las baterías está arriba del 90% del voltaje de flote. 3. Si la carga está arriba del 25%.
56	Temperatura Ambiental Excesiva	La temperatura ambiental se encuentra arriba del límite del Sistema UPS Taurus MD 30-300kVA. Se requiere de aire acondicionado para regular la temperatura ambiental.
57	Falla en CAN del Rectificador	La comunicación del bus CAN del rectificador es anormal. Revise que los cables de comunicación están conectados correctamente.
58	Falla en CAN IO del Inversor	La señal de comunicación IO del bus CAN del inversor es anormal. Revise que los cables de comunicación están conectados correctamente.
59	Falla en CAN DATA de Inversor	La comunicación DATA del bus CAN del inversor es anormal. Revise que los cables de comunicación están conectados correctamente.

No.	Evento en el UPS	Descripción
60	Falla de Potencia Compartida	La diferencia en la corriente de salida de dos o más módulos de potencia en el Sistema está sobre el límite. Ajuste el voltaje de salida de los módulos de potencia y reinicie el Sistema UPS Taurus MD 30-300kVA.
61	Falla en Pulso de Sincronización	La señal de sincronización entre los módulos de potencia es anormal. Revise que los cables de comunicación estén conectados correctamente.
62	Falla en Detección de Voltaje de Entrada	 El voltaje de entrada del módulo de potencia N# es anormal. Revise: 1. Si los cables de alimentación están conectados correctamente. 2. Si los fusibles a la entrada están abiertos. Si la energía de alimentación es normal.
63	Falla en Detección de Voltaje de Baterías	 El voltaje de las baterías es anormal. Revise: 1. Si las baterías están normales. 2. Si los fusibles de las baterías están abiertos en la tarjeta de potencia de entrada.
64	Falla en Voltaje de Salida 🎻	El voltaje de salida es anormal.
65	Falla de Detección de Voltaje de Derivación	 El voltaje de derivación es anormal. Revise: 1. Que el disyuntor de derivación esté cerrado y en buenas condiciones. 2. Que los cables de derivación estén conectados correctamente.
66	Falla en el Puente del Inversor	Los IGBTs del inversor presentan falla y están abiertos.
67	Error de Temperatura en Ductos de Ventilación de Salida	 La temperatura en los ductos de ventilación de salida de módulos de potencia está sobre el límite. Revise: Si los ventiladores están funcionando de forma normal. Si los inductores del PFC o inversor presentan anormalidades. Si el ducto de paso de aire se encuentra bloqueado. Si la temperatura ambiental es demasiado alta.
68	Desbalance en Corriente de Entrada	 La diferencia de corriente de entrada entre cada dos fases es de más del 40% de la corriente nominal. Revise: 1. Si los fusibles, diodo, IGBTs o diodos del PFC del rectificador presentan anormalidades. 2. Si el voltaje de entrada es anormal.
69	Sobre Voltaje en bus CC	El voltaje de los capacitores del bus CC está sobre el límite. El Sistema UPS Taurus MD 30-300kVA apagará el rectificador y el inversor.
70	Falla de Arranque Suave del Rectificador	 Mientras el procedimiento de arranque suave concluye, el voltaje del bus CC está bajo el límite del cálculo de acuerdo al voltaje de entrada. Revise: Si los diodos del rectificador están dañados. Si los IGBTs del PFC están dañados. Si los diodos del PFC están dañados. Si los conductores de los SCRs o IGBTs están dañados. Si las resistencias o relé del arranque suave están dañados.
71	Falla en Conexión de Relé	Los relés del inversor están abiertos y no pueden funcionar, o los fusibles están abiertos.
72	Corto Circuito en Relé	Los relés del inversor están en corto y no pueden ser liberados.
73	Falla en Sincronización PWM	La señal PWM de sincronización es anormal.

No.	Evento en el UPS	Descripción
74	Suspensión Inteligente	El Sistema UPS Taurus MD 30-300kVA funciona en modo de suspensión inteligente. En este modo, los módulos de potencia estarán a la espera de turno. Se obtendrá más confiabilidad y eficiencia. Se necesitará confirmación que la capacidad de los módulos de potencia restante es suficiente para alimentar la carga. Se necesita confirmación que la capacidad de los módulos de potencia en funcionamiento es suficiente si el usuario agrega más carga al Sistema UPS Taurus MD 30-300kVA. Se recomienda que los módulos de potencia en suspensión sean despertados si no se está seguro de la capacidad de nuevas cargas agregadas.
75	Transferencia Manual a Inversor	Transferencia manual a inversor. Se usa para transferir el Sistema UPS Taurus MD 30-300kVA a inversor cuando la derivación está fuera de rango. El tiempo de interrupción puede ser de más de 20ms.
76	Tiempo Expirado de Sobre Corriente a la Entrada	El tiempo de sobre corriente a la entrada ha expirado y el Sistema UPS Taurus MD 30-300kVA transferirá a modo de baterías. Revise si el voltaje de entrada es demasiado bajo y la carga a la salida es demasiado grande. Regule el voltaje de entrada para que sea más alto de ser posible o desconecte algunas cargas a la salida.
77	Sin Sensor de Temperatura en Ductos de Toma de Aire	El sensor de temperatura de los ductos de toma de aire no está conectado correctamente.
78	Sin Sensor de Temperatura en Ductos de Salida de Aire	El sensor de temperatura de los ductos de salida de aire no está conectado correctamente.
79	Temperatura Alta en Toma de Aire	La temperatura de la toma de aire es demasiado alta. Asegúrese que la temperatura ambiental de operación del Sistema UPS Taurus MD 30-300kVA esté entre 0°C y 40°C.
80	Restablecimiento de Tiempo de Capacitores	Restablece el cronometraje de los capacitores del bus CC.
81	Restablecimiento de Tiempo de Ventiladores	Restablece el cronometraje de los ventiladores.
82	Restablecimiento de Historial de Baterías	Restablece la información del historial de baterías.
83	Restablecimiento de Tiempo de Ventiladores de Derivación	Restablece el cronometraje de los ventiladores del módulo de derivación.
84	Sobre Temperatura en Baterías	Las baterías presentan temperatura excesiva. Función opcional.
85	Ventiladores de Derivación Expirados	La vida útil de los ventiladores del módulo de derivación ha caducado, y se recomienda reemplazarlos con ventiladores nuevos. Debe ser activado por software.
86	Capacitores Expirados	La vida útil de los capacitores ha caducado, se recomienda reemplazarlos con capacitores nuevos. Debe ser activado vía software.
87	Ventiladores Expirados	La vida útil de los ventiladores de los módulos de potencia ha caducado, se recomienda reemplazarlos con ventiladores nuevos. Debe ser activado vía software.
88	Bloqueo de Conductor de IGBTs de Inversor	 Los IGBTs del inversor son apagados. Revise: Que los módulos de potencia estén insertados en el gabinete correctamente. Si los fusibles entre el rectificador y el inversor están abiertos.
89	Baterías Expiradas	La vida útil de las baterías ha caducado, se recomienda reemplazar con baterías nuevas. Debe ser activado vía software.
90	Falla en CAN de Derivación	El bus CAN entre el módulo de derivación y el gabinete es anormal.
91	Filtro de Polvo Expirado	El filtro de polvo necesita ser limpiado o reemplazado con uno nuevo.
92	Disparo de Forma de Onda	La forma de onda ha sido salvada durante una falla del Sistema UPS Taurus MD 30-300kVA.

No.	Evento en el UPS	Descripción
93	Falla de CAN en Derivación	 El módulo de derivación y el gabinete se comunican entre ellos vía el bus CAN. Revise: 1. Si el conector o el cable de señal están en buenas condiciones. 2. Si la tarjeta de monitoreo está en condiciones normales.
94	Error de Firmware	Para uso exclusivo del fabricante.
95	Ajuste del Sistema	Para uso exclusivo del fabricante.
96	Sobre Temperatura en Derivación	El módulo de derivación presenta temperatura excesiva. Revise: Si la carga es demasiada para la derivación. Si la temperatura ambiental está arriba de 40°C. Si los SCRs del módulo de derivación están ensamblados correctamente. Si los ventiladores del módulo de derivación están funcionando de forma normal.
97	ID de Módulo Duplicado	Por lo menos dos módulos de potencia han sido configurados con el mismo ID en la tarjeta de conectores de potencia. Ajuste el ID en la secuencia correcta.

NOTA

Palabras de diferentes colores representan diferentes niveles de eventos:

- a) Verde: Ocurre un evento.
 - El evento ocurre, y después desaparece.
- c) Amarillo:

b) Gris:

- d) Rojo:
- Ocurre una advertencia.
- Ocurre una falla.

3.3.5 Menú de Operación

Toque el ícono Operate (en la parte inferior de la pantalla), y el Sistema entrará a la página de "Operar", como se muestra en la Figura 3-13.

Figura 3-13, Menú de Operación.

El menú "Operación incluye "FUNCIÓN DE BOTÓN" y "COMANDO DE PRUEBA". El contenido se detalla abajo.

Función de Botón

Despejar/Restaurar Zumbido

Enmudece o restaura el zumbido del Sistema al tocar el ícono

Despejar Fallas

Despeje las fallas tocando el ícono

Transferir a y Salir de Derivación

Transfiera a modo de derivación o cancele este comando tocando el ícono Transferir & Jourson O Contractor Byons O Contractor By

Transfiera de modo de derivación a modo de inversor tocando el ícono

Botón para Habilitar "Apagado" de Módulo

Habilite el interruptor para apagar los Módulos de Potencia tocando el ícono

Restablecer Información de Historial de Baterías

Restablezca la información de historial de baterías tocando el ícono **betterios**, la información de historial incluye las veces que se descarga la batería, los días para funcionamiento y horas de descarga.

Restablecimiento de Tiempo de Uso de Filtro de Polvo

Restablezca el tiempo de uso del filtro de polvo tocando el ícono Restablezca face Uso Taxe, incluye los días de uso y periodo de mantenimiento.

Comandos de Prueba

Prueba de Baterías

Al tocar el ícono **Battery Test**, el Sistema transfiera a modo de baterías para probar las condiciones de las baterías. Asegúrese que la derivación esté funcionando de forma normal y la capacidad de las baterías sea mayor al 25%.

Mantenimiento de Baterías

Al tocar el ícono Battery Maintenance, el Sistema transfiere a modo de baterías. Esta función es usada para mantenimiento de las baterías, el cual requiere que la derivación esté funcionando de forma normal y la capacidad de las baterías sea mayor al 25%.

Impulso de Baterías

+ -

Al tocar el ícono Battery Boost, el Sistema comienza la carga de impulso de las baterías.

Flote de Baterías

Detener Prueba

Al tocar el ícono stop Test, el Sistema detiene la prueba de baterías o el mantenimiento de baterías.

3.3.6 Menú de Osciloscopio

Toque el ícono (en la parte derecha inferior de la pantalla), y el Sistema mostrará la página del Osciloscopio, como se muestra en la Figura 3-14.

El usuario puede ver las formas de onda para el voltaje de salida, corriente de salida y voltaje de derivación al tocar el ícono correspondiente en el lado izquierdo de la interfaz. Se puede hacer un acercamiento o alejamiento de las formas de onda.

Toque el ícono para mostrar el voltaje trifásico de salida.

Toque el ícono para mostrar la corriente trifásica de salida.

V Bypass

Toque el ícono para mostrar el voltaje trifásico de derivación.

Toque el ícono para hacer un acercamiento de la forma de onda.

Toque el ícono para hacer un alejamiento de la forma de onda.

4 Operaciones

4.1 Arranque del Sistema UPS Taurus MD 30-300kVA

4.1.1 Arranque en Modo Normal

El Sistema UPS Taurus MD 30-300kVA debe ser puesto en marcha por un ingeniero de puesta en marcha una vez completada la instalación. Se deben seguir los pasos listados abajo:

- 1) Asegúrese que todos los disyuntores estén abiertos.
 - a) Para AB-TAURMD60K30X, encienda los disyuntores en la siguiente secuencia: disyuntor de salida (Q4); disyuntor de entrada principal (Q1); disyuntor de entrada de derivación (Q2). El Sistema comienza a inicializarse.
 - b) Para gabinetes de cuatro y seis ranuras solo hay un disyuntor de derivación manual en el gabinete. Encienda los disyuntores externos en la siguiente secuencia: disyuntor externo de entrada; disyuntor externo de entrada de derivación. El Sistema comienza a inicializarse.
 - c) Para AB-TAURMD300K30X, encienda los disyuntores en la siguiente secuencia: disyuntor de entrada principal (Q1); disyuntor de entrada de derivación (Q4); disyuntor de salida (Q3). El Sistema comienza a inicializarse.
- 2) El panel LCD en el frente del gabinete se ilumina. El sistema entra en la página de inicio, como se muestra en la figura 3-4.
- 3) Note la barra de energía en la página de inicio, y ponga atención a los indicadores LED. El indicador "REC" parpadea, que indica que el rectificador está arrancando. Los indicadores LED se listan abajo en la Tabla 4-1.

1	Indicador	Estado	Indicador	Estado
	Rectificador	Verde Intermitente	Inversor	Apagado
1	Batería	Rojo	Carga	Apagado
	Derivación	Apagado	Estado	Rojo

Tabla 4-1, Arranque del Rectificador.

4) Después de aproximadamente 30 segundos, el indicador "REC" se ilumina verde fijo, que significa que el rectificador ha concluido su arranque. Al mismo tiempo, el interruptor de derivación estática se cierra, y el inversor arranca. Los indicadores LED se listan abajo en la Tabla 4-2.

Tabla 4-2, Arranque del Inversor.

Indicador	Estado	Indicador	Estado
Rectificador	Verde	Inversor	Verde Intermitente
Batería	Rojo	Carga	Verde
Derivación	Verde	Estado	Rojo

 Después de aproximadamente 90 segundos, el Sistema UPS Taurus MD 30-300kVA transferirá de derivación a inversor, una vez que el inversor concluye su arranque. Los indicadores LED se listan abajo en la Tabla 4-3.

Tabla 4-3, Inversor alimentando la carga.

Indicador	Estado	Indicador	Estado
Rectificador	Verde	Inversor	Verde
Batería	Rojo	Carga	Verde
Derivación	Apagado	Estado	Rojo

6) El UPS se encuentra ahora en modo normal. Cierre el disyuntor externo de baterías y el Sistema UPS Taurus MD 30-300kVA comenzará a cargar las baterías. Los indicadores LED se listan abajo en la Tabla 4-4.

Tabla 4	4-4,	Modo	normal.
---------	------	------	---------

Indicador	Estado	Indicador	Estado
Rectificador	Verde	Inversor	Verde
Batería	Verde	Carga	Verde
Derivación	Apagado	Estado	Verde

7) El arranque ha concluido. El usuario puede ahora cerrar el disyuntor de salida principal, y a continuación uno por uno de los disyuntores derivados.

NOTA

- Cuando el Sistema arranca, los parámetros almacenados serán cargados.
- El usuario podrá navegar todos los eventos durante el proceso de arranque revisando el menú de registro.
- El usuario puede revisar la información de los módulos de potencia con las teclas en la parte frontal de los módulos.

4.1.2 Arranque en Baterías

El arranque en baterías se refiere al arranque en frío. Los pasos para la puesta en marcha son los siguientes:

- 1) Confirme que las baterías estén correctamente conectadas, y que al menos haya un módulo de potencia instalado en el gabinete. A continuación, cierre el disyuntor externo de baterías.
- 2) Presione y mantenga presionado el interruptor rojo de arranque en frío hasta que el indicador "BAT" se ilumine en verde intermitente, que indica que el Sistema está siendo energizado por las baterías. La ubicación del interruptor de arranque en frío se muestra en la Figura 4-1.

Figura 4-1, Ubicación del interruptor de arranque en frío.

(a) Ubicación del interruptor de arranque en frío para AB-TAURMD60K30X.

(b) Ubicación del interruptor de arranque en frío para AB-TAURMD120K30X.

(c) Ubicación del interruptor de arranque en frío para AB-TAURMD180K30X.

- (d) Ubicación del interruptor de arranque en frío para AB-TAURMD300K30X.
- 3) Después de aproximadamente 30 segundos, el indicador "BAT" se ilumina verde fijo, el indicador "INV" se ilumina verde intermitente y después de aproximadamente 30 segundos se ilumina verde fijo y el indicador "OUTPUT" pasa de apagado a verde. Los indicadores LED se listan abajo en la Tabla 4-5.

Tabla	4-5.	Arrandu	e en	frío.
raora	т Э,	7 manqu	c un	mo.

Indicador	Estado	Indicador	Estado
Rectificador	Rojo Intermitente	Inversor	Verde
Batería	Verde Intermitente	Carga	Verde
Derivación	Rojo Intermitente	Estado	Rojo

4) Cierre los disyuntores externos de energía de salida para alimentar las cargas, y el Sistema quedará funcionando en baterías.

NOTA

Para los AB-TAURMD60K30X y AB-TAURMD120K30X, la función de arranque en frío es opcional; para los gabinetes de seis y diez ranuras la función es estándar.

4.2 Apagado del Sistema UPS Taurus MD 30-300kVA

Si se desea apagar el Sistema UPS Taurus MD 30-300kVA por completo, primero asegúrese que la carga sea apagada correctamente y posteriormente, apague los disyuntores en la siguiente secuencia: disyuntor externo de baterías; disyuntor de entrada principal (interno o externo); disyuntor de entrada de derivación (interno o externo, de estar presente). La pantalla LCD se apagará completamente.

Nota: Si el Sistema UPS Taurus MD 30-300kVA se encuentra en modo de derivación manual, también apague el disyuntor de derivación para mantenimiento.

4.3 Procedimiento para Cambiar entre Modos de Operación

4.3.1 Transferencia de Modo Normal a Modo de Baterías

El Sistema UPS Taurus MD 30-300kVA transfiere a modo de baterías inmediatamente cuando la entrada principal falla o cae debajo del límite prestablecido.

4.3.2 Transferencia de Modo Normal a Modo de Derivación

Existen dos formas de transferir el Sistema UPS Taurus MD 30-300kVA de modo normal a modo de derivación.

- Ingrese al menú "Operación", toque el ícono "Transferir a derivación" renteretation, y el Sistema UPS Taurus MD 30-300kVA deberá transferir a modo de derivación.
- 2) Presione y mantenga presionado la tecla "BYP" en el panel de control del operador por más de dos segundos, y el Sistema deberá transferir a modo de derivación. Este método requiere que el interruptor detrás de la puerta frontal sea habilitado. El interruptor se muestra abajo en la Figura 4-2.

Figura 4-2, Habilitación del Interruptor.

Asegure que la derivación esté funcionando normalmente antes de transferir a modo de derivación para evitar fallas en el Sistema UPS Taurus MD 30-300kVA.

4.3.3 Transferencia de Modo de Derivación a Modo Normal

Existen dos formas de transferir el Sistema UPS Taurus MD 30-300kVA a modo normal desde modo de derivación:

- 1) Ingrese al menú "Operación", toque el ícono "Transferir a Inversor" Transferto Inverter, y el Sistema UPS Taurus MD 30-300kVA deberá transferir a Modo Normal.
- 2) Presione y mantenga presionada la tecla "INV" en el panel de control del operador por más de dos segundos y el Sistema transfiere a Modo Normal.

NOTA

Normalmente, el Sistema UPS Taurus MD 30-300kVA transferirá a Modo Normal automáticamente. Esta función se utiliza cuando la frecuencia de derivación está fuera de rango y cuando el Sistema necesita transferir a Modo Normal manualmente.

4.3.4 Transferencia de Modo Normal a Modo de Derivación para Mantenimiento

Los siguientes procedimientos pueden transferir la carga de la salida del inversor del Sistema UPS Taurus MD 30-300kVA a la fuente de alimentación de derivación para mantenimiento.

- 1) Transfiera el Sistema UPS Taurus MD 30-300kVA a Modo de Derivación siguiendo las instrucciones en la sección 4.2.2.
- 2) Abra el disyuntor de las baterías y cierre el disyuntor interno o externo de derivación manual (para AB-TAURMD60K30X, existe un disyuntor de derivación para mantenimiento, Q3; para gabinetes de cuatro o seis ranuras, solo hay un interruptor para derivación manual, se usa junto con disyuntores externos; para AB-TAURMD300K30X, hay un disyuntor interno de derivación para mantenimiento, Q2). La carga estará ahora alimentada por la derivación de mantenimiento y la derivación estática.
- Apague el disyuntor externo de baterías, el disyuntor de entrada principal (interno o externo), el disyuntor de entrada de derivación (interno o externo) y el disyuntor de salida (interno o externo), uno por uno.
 - a) Para AB-TAURMD60K30X, primero apague el disyuntor externo de baterías, y después apague el disyuntor de entrada principal (Q1), el disyuntor de entrada de derivación (Q2) y el disyuntor de salida (Q4).

- b) Para gabinetes de cuatro y seis ranuras, solo hay un interruptor de derivación manual en el gabinete, se sugiere agregar un disyuntor externo, por ejemplo, un disyuntor externo de entrada (si hay entradas duales se requieren dos disyuntores de entrada: un disyuntor para la entrada principal, y un disyuntor para la entrada de derivación); un disyuntor externo de derivación para mantenimiento; un disyuntor de salida.
- c) Para AB-TAURMD300K30X, apague el disyuntor externo de baterías, y después apague el disyuntor de entrada principal (Q1), el disyuntor de entrada de derivación (Q4) y el disyuntor de salida (Q3), uno por uno.

NOTA

- Los gabinetes de cuatro y seis ranuras solo tienen un disyuntor de derivación manual. En Modo de Derivación Manual (la derivación manual alimenta las cargas), existen voltajes peligrosos en la terminal y barra interna de cobre.
- Los gabinetes de cuatro y seis ranuras requieren el uso de disyuntores externos (incluyendo disyuntor externo de entrada principal, disyuntor externo de entrada de derivación, disyuntor externo de salida y disyuntor externo de derivación para mantenimiento).

Antes de llevar a cabo esta operación, revise los mensajes en la pantalla LCD para asegurar que la fuente de energía de derivación esté en condiciones regulares y que esté en sincronía con el inversor, esto con el fin de evitar una interrupción breve a la alimentación de la carga.

Si requiere llevar a cabo mantenimiento a algún módulo de potencia, espere al menos 5 minutos para permitir que los capacitores del bus CC se descarguen completamente antes de retirar la cubierta.

4.3.5 Transferencia de Modo de Derivación para Mantenimiento a Modo Normal

Los siguientes procedimientos pueden transferir la carga del Modo de Derivación de Mantenimiento a la salida del inversor.

- Cierre el disyuntor de derivación (interno o externo), y la pantalla LCD se encenderá, después de 30 segundos el indicador "BYP" se ilumina verde fijo y la carga es alimentada por la derivación de mantenimiento y la derivación estática (para los AB-TAURMD60K30X, primero cierre el disyuntor de salida (Q4), antes de cerrar el disyuntor de derivación (Q2)).
- 2) Apague el interruptor de derivación para mantenimiento y la carga será alimentada por la derivación estática. A continuación, encienda el disyuntor de entrada principal (si la entrada principal y la entrada de derivación vienen del mismo disyuntor, favor de ignorar este paso), el rectificador arrancará, y para el procedimiento, favor de referirse a la sección 4.1.1. Para concluir, cierre el disyuntor externo de baterías.

4.4 Mantenimiento de las Baterías

Si las baterías no son usadas en un periodo extendido de tiempo, es necesario hacer una prueba para verificar su condición. Se proporcionan dos métodos:

1) Prueba manual de descarga. Ingrese al menú "Operación", como se muestra en la Figura 4-3, y toque

el ícono "Mantenimiento de Baterías" el Sistema transferirá a modo de baterías para llevar a cabo la descarga. El Sistema detendrá la descarga cuando las baterías lleguen a un 20% de su capacidad o lleguen a un voltaje bajo. El usuario podrá detener la descarga tocando el ícono "Detener

Prueba"

FUNCTION B	UTTON	TEST CC	MMAND
Esc Mute	Fault Clear	H - H	H B attery Maintenance
B	ransfer to Inverter	+ - V	H A V
Enable Module "OFF" Button Re	eset Battery History Data	Stop Test	
Reset Dust Filter Using Time	Front Page		

- 2) Descarga automática. El Sistema puede ser configurado para descargar las baterías automáticamente después de un periodo determinado. El procedimiento para configurar el Sistema es el siguiente:
 - a) Habilite "Descarga Automática de Baterías". Ingrese a la página "Configuración" del menú de ajustes, toque "Descarga Automática de Baterías" y confirme (esto necesita hacerse en la fábrica).
 - b) Configuración del periodo para "Descarga Automática de Baterías". Ingrese a la página "Batería" del menú de ajustes (vea Figura 4-4), ingrese el periodo de tiempo en la línea "Periodo para Descarga Automática de Baterías" y confirme.

Figura 4-4, Configurando el Periodo para Descarga Automática de Baterías.

DATE & TIME	A	VRI	Battery Type
		20	Battery Number
LANGUAGE	AH	100	Battery Capacity
		2.25	Float Charge Voltage/Cell
COMM.		2.30	Boost Charge Voltage/Cell
1.1		1.65	EOD Voltage/Cell,@ 0.6C Current
USER		1.75	EOD Voltage/Cell,@ 0.15C Current
DATTERN		5	PM Charge Current Percent Limit
BALLERY	mV/°C	3.0	Battery Temperature Compensate
SERVICE	Hour	12	Boost Charge Time Limit.
Schule	Hour	2160	Auto Boost Period
RATE	Hour	720	Auto Maintenance Discharge Period
		8	Reserved
CONFIGURE	~	ettings	Please Confirm S
ta Scona	O	2	

El nivel de carga para llevar a cabo la descarga automática de baterías debe ser entre 20% y 100%, de no ser así, el Sistema no iniciará el proceso automáticamente.

4.5 EPO (Apagado de Emergencia)

El interruptor EPO ubicado en el panel de control del operador (con una cubierta para evitar activación accidental, vea la Figura 4-5), está diseñado para apagar el Sistema UPS Taurus MD 30-300kVA en condiciones de emergencia (por ejemplo, incendio, inundación, etc.). Para lograr esto, solo presione el interruptor EPO, y el Sistema apagará el rectificador, el inversor y dejará de suplir energía a la carga inmediatamente (incluyendo el inversor y la derivación), y detendrá la carga/descarga de baterías.

Si existe energía en la entrada principal, el circuito de control del Sistema UPS Taurus MD 30-300kVA se mantendrá activo; sin embargo, la salida será apagada. Para aislar el Sistema UPS Taurus MD 30-300kVA completamente, el usuario debe apagar la fuente externa de energía de la entrada principal. El usuario podrá reiniciar el Sistema UPS Taurus MD 30-300kVA energizándolo nuevamente.

Cuando el EPO es disparado, la carga no será alimentada por el Sistema UPS Taurus MD 30-300kVA. Tenga cuidado al usar la función EPO.

4.6 Instalación de Sistema de Operación en Paralelo

Para los gabinetes de dos, cuatro y seis ranuras, normalmente se pueden poner en paralelo hasta 4 gabinetes, y la función de paralelo es opcional. Si el usuario requiere de esta función, favor de confirmar la configuración con su representante de ventas antes de llevar a cabo la compra. Para el AB-TAURMD300K30X, se pueden poner en paralelo un máximo de tres gabinetes. Para más detalles en cuanto a Sistemas en paralelo, favor de referirse al Anexo "Instrucciones Para Sistemas en Paralelo para los Sistemas UPS Modulares".

5 Mantenimiento

Este capítulo proporciona una introducción al mantenimiento del Sistema UPS Taurus MD 30-300kVA, incluyendo instrucciones de mantenimiento de módulos de potencia y módulo de monitoreo de derivación, y el método para reemplazar filtros de polvo.

5.1 Precauciones

El mantenimiento de los módulos de potencia y módulo de monitoreo de derivación solo puede ser llevado a cabo por ingenieros de mantenimiento.

- 1) Los módulos de potencia deben ser retirados del gabinete de arriba hacia abajo, para prevenir que el gabinete se incline debido a un centro de gravedad alto.
- 2) Para asegurar la seguridad antes de proporcionar mantenimiento a los módulos de potencia y módulo de derivación, use un multímetro para medir el voltaje entre las partes operativas y tierra para confirmar que no existen voltajes peligrosos, por ejemplo, que el voltaje CC sea menor a 60VCC, y que el voltaje CA máximo sea menor a 42.4VCA.
- 3) No se recomienda llevar a cabo un remplazo en caliente del módulo de derivación; el módulo de derivación solo podrá ser retirado cuando el Sistema UPS Taurus MD 30-300kVA se encuentra en Modo de Derivación Manual o cuando el Sistema UPS Taurus MD 30-300kVA está completamente apagado.
- 4) Espere 10 minutos antes de abrir la cubierta de los módulos de potencia o el módulo de derivación después de retirarlos del gabinete.

5.2 Instrucciones Para Mantenimiento de Módulos de Potencia

Confirme que el Sistema UPS Taurus MD 30-300kVA esté funcionando en Modo Normal y que la derivación este funcionando correctamente antes de retirar el módulo de potencia que requiera mantenimiento.

- 1) Asegúrese que los módulos de potencia restantes no serán sobrecargados.
- 2) Apague el módulo.
 - a) Habilite la función de apagado. Panel LCD > Menú "Operación" > Habilitar Tecla
 "OFF" para módulos de potencia

ω

- b) Presione la tecla "OFF" por tres segundos, el módulo de potencia se desconecta del Sistema.
- 3) Retire los tornillos de montura en los dos lados frontales del módulo de potencia (vea la Figura 2-11) y retire el módulo de potencia entre dos personas.
- Espere 10 minutos antes de abrir la cubierta del módulo de potencia para llevar a cabo el mantenimiento.

5) Después del mantenimiento, instale nuevamente el módulo de potencia como se detalla en la sección 2.3.2, y el módulo de potencia automáticamente se conectará al Sistema.

5.3 Instrucciones Para Mantenimiento de la Unidad de Monitoreo y Derivación

5.3.1 Mantenimiento de la Unidad de Monitoreo y Derivación para AB-TAURMD60K30X y AB-TAURMD120K30X.

Confirme que el Sistema UPS Taurus MD 30-300kVA esté funcionando en Modo Normal y que la derivación esté funcionando correctamente.

- 1. Transfiera el Sistema UPS Taurus MD 30-300kVA a Modo de Derivación de Mantenimiento (Refiérase a la sección 4.3.4). La carga será alimentada por la derivación de mantenimiento.
- Retire dos módulos de potencia, los que estén más próximos a la unidad de monitoreo y la unidad de derivación. Esto asegurará que haya suficiente espacio para llevar a cabo el mantenimiento de la unidad de monitoreo y derivación.
- 3. Una vez completado el mantenimiento, inserte los módulos de potencia en el gabinete y apriete los tornillos en ambos costados de los módulos de potencia.
- 4. Transfiera el Sistema UPS Taurus MD 30-300kVA a Modo Normal desde el Modo de Derivación de Mantenimiento (Refiérase a la sección 4.3.5).

5.3.2 Mantenimiento de la Unidad de Monitoreo y Derivación para Gabinetes de Seis y Diez Ranuras.

Confirme que el Sistema UPS Taurus MD 30-300kVA esté funcionando en Modo Normal y que la derivación esté funcionando correctamente.

- 1. Transfiera el Sistema UPS Taurus MD 30-300kVA a Modo de Derivación de Mantenimiento (Refiérase a la sección 4.3.4). La carga será alimentada por la derivación de mantenimiento.
- Para el AB-TAURMD180K30X, los sistemas de monitoreo y derivación se encuentran juntos, se llama el módulo de monitoreo y derivación; retire el módulo después de retirar los tornillos a ambos lados. Para el AB-TAURMD300K30X, el sistema de monitoreo y el de derivación están separados; retire los tornillos a ambos lados de los módulos y retírelos uno por uno.
- 3. Una vez completado el mantenimiento, inserte los módulos nuevamente y coloque los tornillos nuevamente.
- 4. Transfiera el Sistema UPS Taurus MD 30-300kVA a Modo Normal desde el Modo de Derivación de Mantenimiento (Refiérase a la sección 4.3.5).

5.4 Mantenimiento de las Baterías

Para baterías de Ácido-Plomo libres de mantenimiento, las baterías pueden prolongar su vida útil cuando son mantenidas de acuerdo con los requerimientos. La vida útil de las baterías es determinada principalmente por los siguientes factores:

- 1) Instalación. Las baterías deben ser colocadas en un espacio seco y fresco con buena ventilación. Evite luz solar directa y manténgalas alejadas de fuentes de calor. Al instalarlas, asegure la conexión correcta a otras baterías con las mismas especificaciones.
- 2) Temperatura. La temperatura más apta para el almacenaje de las baterías es entre 20°C y 25°C.
- 3) Corriente de carga/descarga. La mejor corriente de carga para baterías de ácido-plomo es 0.1C. La corriente máxima de carga puede ser 0.2C. La corriente de descarga deberá estar entre 0.05C y 3C.
- 4) Voltaje de carga. La batería se encuentra en estado de espera la mayor parte del tiempo. Cuando la energía de alimentación es normal, el Sistema cargará las baterías en modo de impulso (voltaje constante máximo limitado) hasta que están completamente cargadas, y después transfiere a estado de carga de flote.
- 5) Profundidad de descarga. Evite hacer descargas profundas, las cuales dramáticamente reducirán la vida útil de las baterías. Cuando el Sistema UPS Taurus MD 30-300kVA funciona en modo de baterías con una pequeña carga o sin carga por un periodo prolongado, causará que las baterías se descarguen profundamente.
- 6) Revisión periódica. Observe si se presenta cualquier anormalidad de las baterías, mida para verificar si el voltaje de cada batería se encuentra balanceado. Descargue las baterías periódicamente.

¡Es muy importante hacer una inspección diariamente!

Revise y confirme que la conexión con las baterías sea apretada regularmente, y asegúrese que no exista claro anormal generado por las baterías.

Si alguna batería tiene fugas o está dañada, debe ser reemplazada, almacenada en un contenedor resistente a ácido sulfúrico y desechada de acuerdo con las regulaciones locales.

Las baterías de ácido-plomo desechadas es un tipo de desecho peligroso y es uno de los contaminantes principales controlados por el gobierno.

Por lo tanto, su almacenamiento, transporte uso y desecho debe ser en conformidad con regulaciones y leyes nacionales y locales concernientes a la disposición de desechos peligrosos y desecho de baterías, y a otros estándares.

De acuerdo con las leyes nacionales, las baterías de ácido-plomo deben ser recicladas y utilizadas nuevamente, y está prohibido desechar las baterías de cualquier forma que no sea reciclaje. El desechar baterías de ácido-plomo a voluntad o por otros métodos incorrectos causará contaminación ambiental severa, y la persona que lo lleve a cabo soportará las responsabilidades legales correspondientes.

5.5 Reemplazo del Filtro de Polvo (Opcional)

Como se muestra en la Figura 5-1, existen 3 o 4 filtros de polvo en la parte posterior de la puerta frontal del Sistema UPS Taurus MD 30-300kVA. Cada filtro es mantenido en su lugar mediante una abrazadera en ambos lados de cada filtro. El procedimiento para reemplazar cada filtro es el siguiente:

- 1) Abra la puerta frontal y localice los filtros en la parte posterior de la puerta.
- 2) Retire una de las abrazaderas.
- 3) Retire el filtro de polvo sucio, y coloque uno nuevo.
- 4) Instale la abrazadera nuevamente.

6 Especificaciones del Producto

Este capítulo proporciona las especificaciones del producto, incluyendo características ambientales, mecánicas y eléctricas.

6.1 Estándares Aplicables

El Sistema UPS Taurus MD 30-300kVA ha sido diseñado en conformidad a los siguientes estándares europeos e internacionales:

Tabla 6-1, Conformidad con Estándares Europeos e Internacionales.

Item	Referencia Normativa
Requerimientos generales de seguridad para Sistemas UPS utilizados en áreas accesibles a operadores.	IEC624040-1
Requerimientos de compatibilidad electromagnética (EMC) para Sistemas UPS.	IEC62040-2
Método de especificación de desempeño para Sistemas UPS y requerimientos para pruebas.	IEC62040-3

NOTA

Los estándares mencionados arriba para productos incorporan cláusulas de conformidad relevantes con estándares genéricos IEC y EN para seguridad (IEC/EN/AS60950), emisiones e inmunidad electromagnética (Series IEC/EN61000) y construcción (Series IEC/EN60146 y 60950).

6.2 Características Ambientales

Fabla 6-2, Cai	racterísticas	Ambientales.
----------------	---------------	--------------

Item	Unidad	Parámetro
Nivel Acústico de Ruido	dB	<65dB @ 100% carga, 62dB @ 45% carga, a 1m
Altura Operativa	m	\leq 1,000. 1% derrateo de carga por cada 100m, de 1,000 a 2,000m
Humedad Relativa	%	0-95%, sin condensación
Temperatura Operativa	°C	0-40 (para UPS solamente). La vida útil de las baterías se reduce por la mitad por cada 10°C sobre 20°C.
Temperatura de Almacenaje	°C	-40 a 70

6.3 Características Mecánicas

Tabla 6-3, Características Mecánicas para el Gabinete.

Item	Unidad	MD60K30X	MD120K30X	MD180K30X	MD300K30X
Dimensiones An x Pr x Al	mm	600 x 980 x 1,150	650 x 960 x 1,600	650 x 1,095 x 2,000	1,300 x 1,100 x 2,000
Peso	Kg	120	170	220	450

Color	ND	RAL7021, Negro
Protección	ND	IP20

Tabla 6-4, Características Mecánicas para Módulos de Potencia.

Item	Unidad	Módulo de Potencia
Dimensiones An x Pr x Al	mm	510 x 700 x 178
Peso	Kg	45

6.4 Características Eléctricas

6.4.1 Características Eléctricas del Rectificador

Tabla 6-5, Rectificador, Entrada CA Principal.

Item	Unidad	Parámetro
Sistema de Distribución		Trifásico + Neutro + Tierra
Voltaje Nominal CA de	VCA	200/208/220 (Trifásico y compartiendo neutro con la
Entrada	VCA	derivación de entrada)
Frecuencia Nominal	Hz	50/60
Rango de Frecuencia de	Hz	40-70
Entrada	V	
Factor de Potencia de Entrada	PF	>0.99

6.4.2 Características Eléctricas del Enlace CC Intermedio

Tabla 6-6, Baterías.

la constitución de la constitu				
Item	Unidad	Parámetro		
Voltaje del bus de Baterías	VCC	Nominal: ±120		
Cantidad de Cartuchos VRLA	Nominal	20 = (baterías de 12V); 120 = (baterías de 2V)		
Voltaia da Cargo da Flota	V/Celda	2.25 (seleccionable de 2.2 a 2.35), modo de carga de voltaje		
voltaje de Carga de Flote	(VRLA)	y corriente constantes		
Voltaje de Carga de	V/Celda	2.3 (seleccionable de 2.3 a2.45), modo de carga de voltaje y		
Impulso	(VRLA)	corriente constantes		
Compensación por	mV/°C/cl	3.0 (seleccionable de $0.a.5.0$)		
Temperatura		5.0 (seleccionable de 0 a 5.0)		
		1.65 (seleccionable de 1.6 a 1.75) @ 0.6C corriente de		
		descarga		
Voltaje Final de Descarga	V/Celda	a 1.75 (seleccionable de 1.65 a 1.8) @ 0.15C corriente de		
(EOD)	(VRLA)	descarga		
	(El voltaje EOD cambia linealmente dentro del ra			
		configurado de acuerdo a la corriente de descarga)		

NOTA

El número predeterminado de baterías es 20. Asegúrese de la cantidad de baterías y el parámetro configurado sean los mismos para evitar cualquier daño a las baterías.

6.4.3 Características Eléctricas del Inversor

Item	Unidad	Parámetro
Capacidad Nominal	kVA	30 a 300
Voltaje CA Nominal	VCA	200/208/220 (línea a línea)
Frecuencia Nominal	Hz	50/60
Regulación de Frecuencia	Hz	$50/60 \pm 0.1\%$

Tabla 6-7, Salida del Inversor (A las Cargas Críticas).

6.4.4 Características Eléctricas de la Entrada Principal y Entrada de Derivación

264 N 1948

Item	Unidad	AB-TAURMD60K30X AB-TAURMD120K30X	AB-TAURMD180K30X AB-TAURMD300K30X
Voltaje CA Nominal	VCA	200/208/220 (trifásico, cuatro-hilos y compartiendo neutro con derivación)	
Corriente Nominal	А	De 167 a 834	4 (Tabla 2-2)
Sobrecarga	%	125%, Operación a largo plazo 126% a 130%, por 10 minutos 131% a 150%, por 1 minuto >150%, por 300ms	 115%, Operación a largo plazo 111% a 125%, por 5 minutos 126% a 150%, por 1 minuto >150%, por 1 segundo
Corriente Nominal para Neutro	A	1.7	x In
Frecuencia Nominal	Hz	50/60	
Tiempo de Transferencia (Derivación e Inversor)	ms	Transferencia si	ncronizada: 0ms
Rango de Voltaje de Derivación	%	Seleccionable, -20% a Limitado Alto: +10%, Limitado Bajo: -10%, -1	a +15% prestablecido , +15%, +20%, +25% , 5%, -20%, -30%, -40%
Rango de Frecuencia de Derivación	Hz	Seleccionable: ±1	Hz, ±3Hz, ±5Hz
6.5 Eficiencia			IS THE T

Tabla 6-8, Entrada Principal y Entrada de Derivación

6.5 Eficiencia

Ļ

Eficiencia del Sistema			
Modo Normal (Doble Conversión)	%	94 (máximo)	
Modo de Baterías	%	93 (máximo)	

6.6 Pantalla e Interfaz

Tabla 6-10, Pantalla e Interfaz

Item	Parámetro
Pantalla	LED + LCD táctil a color
Interfor	Instalados: RS232, RS485, USB, contacto seco
Interiaz	Opcionales: NSMP, AS400

Anexo A Instrucciones Para Sistemas UPS Modulares en Paralelo

El Sistema UPS Taurus MD 30-300kVA puede ser instalado en paralelo. Se pueden colocar hasta 3 Sistemas UPS en paralelo. En AB-TAURMD300K30X se pueden colocar un máximo de 3 sistemas en paralelo. Si se requiere poner más de 3 sistemas en paralelo para los gabinetes de dos, cuatro y seis ranuras, deberá notificar a su ejecutivo de ventas antes de llevar a cabo la compra.

1. Conexión de Cables de Potencia para Dos o Tres Sistemas UPS en Paralelo

Diagrama de Conexión de Cableado para Dos Sistemas UPS en Paralelo (Entradas Duales)

Para los AB-TAURMD120K30X, la configuración de entradas duales es opcional. Los disyuntores DP1 y DP2 son los disyuntores de entrada principal para cada Sistema UPS Taurus MD 30-300kVA. Los disyuntores DD1 y DD2 son los disyuntores de entrada de derivación. Los disyuntores DS1 y DS2 son los disyuntores de salida. DS es el disyuntor principal de salida del sistema de potencia. DDM es el disyuntor de derivación para mantenimiento.

Para comprender fácilmente, suponga que el Sistema tiene solo un disyuntor manual de derivación, y que los disyuntores mencionados arriba son externos.

Diagrama de Conexión de Cableado para Dos Sistemas UPS en Paralelo (Entrada Sencilla)

Los disyuntores DP1 y DP2 son los disyuntores de entrada principal para cada Sistema UPS Taurus MD 30-300kVA. Los disyuntores DS1 y DS2 son los disyuntores de salida. DS es el disyuntor principal de salida del sistema de potencia. DDM es el disyuntor de derivación para mantenimiento.

Para comprender fácilmente, suponga que el Sistema tiene solo un disyuntor manual de derivación, y que los disyuntores mencionados arriba son externos.

Diagrama de Conexión de Cableado para Tres Sistemas UPS en Paralelo (Entradas Duales)

NOTA

Para los AB-TAURMD120K30X, la configuración de entradas duales es opcional. Los disyuntores DP1, DP2 y DP3 son los disyuntores de entrada principal para cada Sistema UPS Taurus MD 30-300kVA. Los disyuntores DD1, DD2 y DD3 son los disyuntores de entrada de derivación. Los disyuntores DS1, DS2 y DS3 son los disyuntores de salida. DS es el disyuntor principal de salida del sistema de potencia. DDM es el disyuntor de derivación para mantenimiento.

Para comprender fácilmente, suponga que el Sistema tiene solo un disyuntor manual de derivación, y que los disyuntores mencionados arriba son externos.

Diagrama de Conexión de Cableado para Tres Sistemas UPS en Paralelo (Entrada Sencilla)

Los disyuntores DP1, DP2 y DP3 son los disyuntores de entrada principal para cada Sistema UPS Taurus MD 30-300kVA. Los disyuntores DS1, DS2 y DS3 son los disyuntores de salida. DS es el disyuntor principal de salida del sistema de potencia. DDM es el disyuntor de derivación para mantenimiento.

Para comprender fácilmente, suponga que el Sistema tiene solo un disyuntor manual de derivación, y que los disyuntores mencionados arriba son externos.

2. Configuración de Sistemas UPS Taurus MD 3-300kVA en Paralelo

La configuración de Sistemas en paralelo es opcional; generalmente, el usuario deberá notificar a su ejecutivo de ventas antes de colocar su orden de compra, y la fábrica configurará los parámetros de paralelo antes de la entrega. Si existe un cambio repentino en el sitio de un Sistema individual a un Sistema en paralelo, ejecute las operaciones siguientes.

1) Localice las tarjetas de paralelo como se muestra abajo.

(a) Ubicación de la Interfaz de Paralelo para AB-TAURMD60K30X y AB-TAURMD120K30X (se muestra el AB-TAURMD120K30X).

(b) Ubicación de la Interfaz de Paralelo para AB-TAURMD180K30X.

- (c) Ubicación de la Interfaz de Paralelo para AB-TAURMD300K30X.
- 2) Configure la tarjeta de paralelo como se muestra abajo.
 - a) Configuración de puentes para Dos Sistemas en paralelo.

(a) Configuración de Puentes para AB-TAURMD60K30X y AB-TAUR120K30X.

NOTA

J34, J36, J38, J40, J41, J42, están puenteadas. J33, J35, J37, J39, J43, J44, J45 y J46 están abiertos.

(b) Configuración de Puentes para AB-TAURMD180K30X y AB-TAURMD300K30X.

NOTA

J3, J5, J7, J9 y J4 están puenteadas. J6, J8, J10, J12, J13, J14, J15 y J16 están abiertos.

b) Configuración de puentes para Tres Sistemas en paralelo.

(a) Configuración de Puentes para AB-TAURMD60K30X y AB-TAURMD120K30X.

NOTA

Solamente J41 y J42 se encuentran puenteados, los demás circuitos se encuentran abiertos.

(b) Configuración de Puentes para AB-TAURMD180K30X y AB-TAURMD300K30X.

NOTA

Solo los circuitos J3 y J4 están puenteados, los demás circuitos se encuentran abiertos.

3) Configure los parámetros en la pantalla.

Siempre y cuando la pantalla se encuentre encendida, el usuario podrá configurar los parámetros de paralelo en la pantalla.

- a) Seleccione el modo de Sistema: Paralelo.
- b) Configure el número de paralelo: para 2 Sistemas, escoja 2; para 3 Sistemas, escoja 3.
- c) Configure el ID para gabinetes: para 2 Sistemas, el primer Sistema es 0 y el segundo 1; para 3 Sistemas, el primero es 0, el segundo es 1 y el tercero 2.
- d) Mantenga los otros parámetros iguales para cada Sistema de no requerirse una configuración especial (mantenga los parámetros predeterminados).

Interfaz de Configuración para Sistemas en Paralelo.

DATE & TIM			de	mM	System		
	P_LBS	LBS	ECO		S_ECO	Parallel	Single
LANGUAGE		1	lumber	ralle	Par		
сомм.		0	oinet ID	C			
-	Hz/Sec	3.0	w Rate				
USER	Hz	5.0	Vindow	ation	chroniza	Syr	
BATTERY		0	lumber	duli	dant Moi	Redur	
		(bnd	tility (Sec	ry to	m Batter	Delay fro	
SERVICE	10	-	5				
PATE		OD	de After E	art N	Auto Sta	System	
MATE	tart	Not S	Only Bypass N		mal	Nor	
CONFIGURE	~	ettings	Confirm S	leas	PI		
Scone	Operate		Satting	el le	lee ea Modul	Cabinet	Home

4) Revise los parámetros en la pantalla, y asegure que los parámetros en la imagen abajo sean los mismos en cada Sistema. De no requerir una configuración especial, mantenga los parámetros predeterminados.

5) Revise la placa de cada Sistema y asegure que el modelo y el voltaje y frecuencia nominal sean los mismos en todos los Sistemas.

NOTA

El AB-TAURMD180K30X solo puede ser puesto en paralelo con otro AB-TAURMD180K30X, no con un AB-TAURMD300K30X; el AB-TAURMD300K30X solo puede ser puesto en paralelo con otro AB-TAURMD300K30X, no con un AB-TAURMD180K30X.

6) Al concluir los ajustes arriba, apague la fuente de alimentación y asegure que la pantalla se apague. A continuación, encienda nuevamente el Sistema, cuando la pantalla se encienda, revise que los parámetros hayan sido configurados exitosamente como se muestra abajo.

- a) Para dos Sistemas en paralelo: el primer Sistema deberá mostrar "(P-0/2)", el segundo "(P-1/2)".
- b) Para tres Sistemas en paralelo: el primer Sistema deberá mostrar "(P-0/3)", el segundo "(P-1/3)" y el tercero "(P-2/3)".

Página de Inicio de un Sistema en Paralelo.

7) Conecte los cables de señal paralela.

Como ejemplo, se muestra el AB-TAURMD180K30X abajo.

a) Para dos Sistemas en paralelo, conecte los cables como se muestra abajo.

Conexión de Cables de Señal para Dos Sistemas en Paralelo.

b) Para tres Sistemas en paralelo, conecte los cables como se muestra abajo.

Conexión de Cables de Señal para Tres Sistemas en Paralelo.

3. Pruebas para Sistemas en Paralelo

Una vez concluidos los procedimientos anteriores, lleve a cabo los pasos siguientes para probar el Sistema en paralelo y confirmar que haya sido completado exitosamente.

Considere el ejemplo abajo con tres Sistemas en paralelo.

Antes de llevar a cabo la operación, mantenga todos los disyuntores apagados.

 Primero cierre DS1, y posteriormente cierre DD1 y DP1. El primer Sistema arrancará automáticamente, para más detalles del arranque, refiérase al Manual del Usuario. Después de aproximadamente 2 minutos, el primer Sistema completará el arranque. Finalmente cierre el disyuntor de baterías usado en el primer Sistema.

En este momento, no deberá haber ninguna alarma en la pantalla; el usuario puede revisar la información en la pantalla, y deberá ser la misma de la placa. Si el arranque falla, contacte al ingeniero de puesta en marcha o a su proveedor.

- 2) Apague el disyuntor de baterías usado en el primer Sistema, y a continuación apague DD1 y DP1. Finalmente, apague DS1. El primer Sistema quedará apagado completamente.
- 3) Lleve a cabo los pasos anteriores en el segundo y tercer Sistema.

4) Después de concluir los pasos anteriores y confirmar que no existen anormalidades, cierre DS1, DS2 y DS3 uno por uno, a continuación, cierre DD1, DD2 y DD3 uno por uno, y finalmente cierre DP1, DP2 y DP3 uno por uno. Después de aproximadamente dos minutos, los tres Sistemas deberán arrancar exitosamente al mismo tiempo, y para concluir, cierre los disyuntores de baterías para cada Sistema.

En este punto no deberá haber ninguna alarma en la pantalla de los Sistemas.

5) Ejecute la función Transfer to Bypass en el primer Sistema como se muestra abajo, los tres Sistemas deberán transferir a modo de derivación al mismo tiempo.

A continuación, ejecute la función **Esc Bypass** en el primer Sistema y los tres Sistemas deberán transferir nuevamente a modo de inversor. Si no se presenta ningún problema, lleve a cabo los pasos anteriores en el segundo y tercer Sistemas.

FUNCTION	NBUTTON	TEST CC	OMMAND
Esc Mute	Fault Clear	+ - M Battery Test	Battery Maintenance
B	Transfer to Inverter	Battery Boost	+ = ♥ţ Battery Float
able Module "Off" Button	Reset Battery History Data	Stop Test	
eset Dust Filter Using Time	Front Page		

Interfaz de Operación para Salir de Modo de Derivación.

FUNCTION	BUTTON	TEST COMMAND		
Mute	Fault Clear	+ - UM Battery Test	H – B attery Maintenance	
B Esc Bypass	Transfer to Inverter	+ - V	Battery Float	
Enable Module "OFF" Button	Reset Battery History Data	Stop Test		
Reset Duct Either Using Time	Front Page			

6) Cierre el disyuntor principal de salida DS y el Sistema quedará listo. El usuario podrá ahora encender los equipos conectados a la salida del Sistema uno por uno.

4. Operaciones Para Sistemas en Paralelo

1) Apagado del Sistema

Cuando se trabaja con Sistemas en paralelo, y si el usuario deseas apagar un Sistema o todos los Sistemas, ejecute los pasos siguientes tomando como ejemplo una configuración de tres Sistemas en paralelo con entradas duales.

Primero apague el disyuntor de baterías usado en el primer Sistema, y a continuación apague DD1 y DP1 uno por uno, finalmente apague DS1. El primer Sistema quedará apagado.

Para recobrar el Sistema, primero encienda DS1 y a continuación encienda DD1 y DP1 uno por uno. Finalmente encienda el disyuntor de las baterías.

Si el usuario desea apagar el segundo y tercer Sistemas, siga los pasos descritos arriba, pero tome en cuenta si la capacidad restante del Sistema es suficiente para mantener la capacidad de la carga.

2) Transferencia del Sistema en Paralelo a Modo de Derivación de Mantenimiento Desde Modo Normal

Tome como ejemplo una configuración de 3 Sistemas en paralelo.

12-0

- a) Ejecute la función Transfer to Bypass en la pantalla de cualquiera de los Sistemas. Todos los Sistemas transferirán a modo de derivación al mismo tiempo.
- b) Retire la placa metálica en el interruptor de derivación manual de cada Sistema, y cambie a derivación manual.
- c) Encienda el disyuntor de mantenimiento DDM.
- d) Apague todos los disyuntores de baterías, uno por uno.
- e) Apague DP1, DP2 y DP3, uno por uno.
- f) Apague DD1, DD2 y DD3, uno por uno.
- g) Apague DS1, DS2, DS3 y DS. Todos los sistemas quedarán apagados. La carga estará alimentada por la derivación de mantenimiento.
- 3) Transferencia del Sistema en Paralelo a Modo Normal Desde Modo de Derivación de Mantenimiento

Tome como ejemplo una configuración de 3 Sistemas en paralelo.

- a) Encienda DS, DS1, DS2 y DS3, uno por uno.
- b) Cambie el interruptor giratorio de derivación manual de cada Sistema a derivación.
- c) Encienda DD1, DD2 y DD3, uno por uno y después de aproximadamente 20 segundos, confirme que la derivación estática de cada Sistema esté encendida.
- d) Apague el disyuntor de derivación de mantenimiento DDM.
- e) Encienda DP1, DP2 y DP3. Aproximadamente 30 segundos después, los rectificadores de todos los módulos deberán estar encendidos.
- f) Encienda todos los disyuntores de baterías, uno por uno.
- g) Cambie el interruptor giratorio de derivación manual a UPS. Después de 90 segundos, todos los Sistemas deberán transferir a modo normal simultáneamente.